Files
BH-TicketSystem/test/buffer_pool_manager_test.cpp
2024-04-26 13:15:00 +00:00

352 lines
12 KiB
C++

#include "bpt/buffer_pool_manager.h"
#include <gtest/gtest.h>
#include <spdlog/async.h>
#include <spdlog/sinks/basic_file_sink.h>
#include <spdlog/sinks/stdout_color_sinks.h>
#include <spdlog/spdlog.h>
#include <cstddef>
#include <cstdio>
#include <cstring>
#include <deque>
#include <memory>
#include <random>
#include <string>
#include <vector>
#include "MemoryRiver.hpp"
#include "MemoryRiverStd.hpp"
#include "bpt/bpt_page.hpp"
#include "bpt/config.h"
#include "bpt/disk_manager.h"
// Demonstrate some basic assertions.
TEST(HelloTest, BasicAssertions) {
// Expect two strings not to be equal.
EXPECT_STRNE("hello", "world");
// Expect equality.
EXPECT_EQ(7 * 6, 42);
}
TEST(Basic, BasicTest) {
DiskManager disk_manager("/tmp/test.db");
BufferPoolManager buffer_pool_manager(10, 3, &disk_manager);
}
TEST(BufferPoolManagerTest, BinaryDataTest) {
const std::string db_name = "test.db";
const size_t buffer_pool_size = 10;
const size_t k = 5;
std::random_device r;
std::default_random_engine rng(r());
std::uniform_int_distribution<char> uniform_dist(0);
auto *disk_manager = new DiskManager(db_name);
auto *bpm = new BufferPoolManager(buffer_pool_size, k, disk_manager);
page_id_t page_id_temp;
auto *page0 = bpm->NewPage(&page_id_temp);
// Scenario: The buffer pool is empty. We should be able to create a new page.
ASSERT_NE(nullptr, page0);
EXPECT_EQ(1, page_id_temp);
char random_binary_data[kPageSize];
// Generate random binary data
for (char &i : random_binary_data) {
i = uniform_dist(rng);
}
// Insert terminal characters both in the middle and at end
random_binary_data[kPageSize / 2] = '\0';
random_binary_data[kPageSize - 1] = '\0';
// Scenario: Once we have a page, we should be able to read and write content.
std::memcpy(page0->GetData(), random_binary_data, kPageSize);
EXPECT_EQ(0, std::memcmp(page0->GetData(), random_binary_data, kPageSize));
// Scenario: We should be able to create new pages until we fill up the buffer pool.
for (size_t i = 1; i < buffer_pool_size; ++i) {
EXPECT_NE(nullptr, bpm->NewPage(&page_id_temp));
}
// Scenario: Once the buffer pool is full, we should not be able to create any new pages.
for (size_t i = buffer_pool_size; i < buffer_pool_size * 2; ++i) {
EXPECT_EQ(nullptr, bpm->NewPage(&page_id_temp));
}
// Scenario: After unpinning pages {0, 1, 2, 3, 4} we should be able to create 5 new pages
for (int i = 1; i <= 5; ++i) {
EXPECT_EQ(true, bpm->UnpinPage(i, true));
bpm->FlushPage(i);
}
for (int i = 1; i <= 5; ++i) {
EXPECT_NE(nullptr, bpm->NewPage(&page_id_temp));
bpm->UnpinPage(page_id_temp, false);
}
// Scenario: We should be able to fetch the data we wrote a while ago.
page0 = bpm->FetchPage(1);
EXPECT_EQ(0, memcmp(page0->GetData(), random_binary_data, kPageSize));
EXPECT_EQ(true, bpm->UnpinPage(1, true));
// Shutdown the disk manager and remove the temporary file we created.
disk_manager->Close();
remove("test.db");
delete bpm;
delete disk_manager;
}
// NOLINTNEXTLINE
TEST(BufferPoolManagerTest, SampleTest) {
const std::string db_name = "test.db";
const size_t buffer_pool_size = 10;
const size_t k = 5;
auto *disk_manager = new DiskManager(db_name);
auto *bpm = new BufferPoolManager(buffer_pool_size, k, disk_manager);
page_id_t page_id_temp;
auto *page0 = bpm->NewPage(&page_id_temp);
// Scenario: The buffer pool is empty. We should be able to create a new page.
ASSERT_NE(nullptr, page0);
EXPECT_EQ(1, page_id_temp);
// Scenario: Once we have a page, we should be able to read and write content.
snprintf(page0->GetData(), kPageSize, "Hello");
EXPECT_EQ(0, strcmp(page0->GetData(), "Hello"));
// Scenario: We should be able to create new pages until we fill up the buffer pool.
for (size_t i = 2; i <= buffer_pool_size; ++i) {
EXPECT_NE(nullptr, bpm->NewPage(&page_id_temp));
}
// Scenario: Once the buffer pool is full, we should not be able to create any new pages.
for (size_t i = buffer_pool_size + 1; i <= buffer_pool_size * 2; ++i) {
EXPECT_EQ(nullptr, bpm->NewPage(&page_id_temp));
}
// Scenario: After unpinning pages {1, 2, 3, 4, 5} and pinning another 4 new pages,
// there would still be one buffer page left for reading page 0.
for (int i = 1; i <= 5; ++i) {
EXPECT_EQ(true, bpm->UnpinPage(i, true));
}
for (int i = 1; i <= 4; ++i) {
EXPECT_NE(nullptr, bpm->NewPage(&page_id_temp));
}
// Scenario: We should be able to fetch the data we wrote a while ago.
page0 = bpm->FetchPage(1);
EXPECT_EQ(0, strcmp(page0->GetData(), "Hello"));
// Scenario: If we unpin page 0 and then make a new page, all the buffer pages should
// now be pinned. Fetching page 0 should fail.
EXPECT_EQ(true, bpm->UnpinPage(1, true));
EXPECT_NE(nullptr, bpm->NewPage(&page_id_temp));
EXPECT_EQ(nullptr, bpm->FetchPage(1));
// Shutdown the disk manager and remove the temporary file we created.
disk_manager->Close();
remove("test.db");
delete bpm;
delete disk_manager;
}
TEST(StoreTest, Test1) {
remove("/tmp/test.db");
DiskManager *disk_manager_ptr = new DiskManager("/tmp/test.db");
BufferPoolManager *buffer_pool_manager = new BufferPoolManager(10, 3, disk_manager_ptr);
char *mem = buffer_pool_manager->RawDataMemory();
uint32_t a = 0x1f2f3f4f;
memcpy(mem, &a, sizeof(uint32_t));
delete buffer_pool_manager;
delete disk_manager_ptr;
disk_manager_ptr = new DiskManager("/tmp/test.db");
buffer_pool_manager = new BufferPoolManager(10, 3, disk_manager_ptr);
mem = buffer_pool_manager->RawDataMemory();
uint32_t b;
memcpy(&b, mem, sizeof(uint32_t));
EXPECT_EQ(a, b);
delete buffer_pool_manager;
delete disk_manager_ptr;
disk_manager_ptr = new DiskManager("/tmp/test.db");
buffer_pool_manager = new BufferPoolManager(10, 3, disk_manager_ptr);
page_id_t page_id;
auto basic_guard = buffer_pool_manager->NewPageGuarded(&page_id);
typedef BPlusTreePage<unsigned long long> PageType;
PageType c;
c.data.p_n = 0x1f2f3f4f;
c.data.key_count = 0x1f2a;
c.data.is_leaf = 0x3e;
c.data.p_data[17].first = 0x8f7f6f5f4f3f2f1f;
c.filler[0] = 0x1f;
*basic_guard.AsMut<PageType>() = c;
basic_guard.Drop();
auto read_guard = buffer_pool_manager->FetchPageRead(page_id);
EXPECT_EQ(c.data.p_n, read_guard.As<PageType>()->data.p_n);
EXPECT_EQ(0, memcmp(&c, read_guard.As<PageType>(), sizeof(PageType)));
read_guard.Drop();
delete buffer_pool_manager;
delete disk_manager_ptr;
disk_manager_ptr = new DiskManager("/tmp/test.db");
buffer_pool_manager = new BufferPoolManager(10, 3, disk_manager_ptr);
read_guard = buffer_pool_manager->FetchPageRead(page_id);
EXPECT_EQ(c.data.p_n, read_guard.As<PageType>()->data.p_n);
EXPECT_EQ(0, memcmp(&c, read_guard.As<PageType>(), sizeof(PageType)));
read_guard.Drop();
delete buffer_pool_manager;
delete disk_manager_ptr;
}
TEST(MemoryRiver, T1) {
typedef unsigned long long DataType;
std::vector<DataType> record;
std::vector<size_t> id_record;
const int test_cnt = 30000;
remove("/tmp/test2.db");
{
MemoryRiver<DataType> river;
river.initialise("/tmp/test2.db");
int x = 3;
river.write_info(x, 1);
DataType dat1 = 0x1f2f3f4f5f6f7f8f;
for (int i = 0; i < test_cnt; i++) {
DataType tmp = dat1 + i;
size_t element_id = river.write(tmp);
record.push_back(tmp);
id_record.push_back(element_id);
}
for (int i = 0; i < test_cnt; i++) {
DataType tmp;
river.read(tmp, id_record[i]);
EXPECT_EQ(record[i], tmp);
}
std::random_device r;
std::default_random_engine rng(r());
for (int i = 0; i < 1000; i++) {
int t = rng() % record.size();
river.Delete(id_record[t]);
record.erase(record.begin() + t);
id_record.erase(id_record.begin() + t);
}
}
{
MemoryRiver<DataType> river("/tmp/test2.db");
int x;
river.get_info(x, 1);
EXPECT_EQ(3, x);
for (int i = 0; i < test_cnt; i++) {
DataType tmp;
river.read(tmp, id_record[i]);
EXPECT_EQ(record[i], tmp);
}
}
}
template <size_t length>
class FixLengthString {
public:
char data[length];
FixLengthString &operator=(const FixLengthString &other) {
memcpy(data, other.data, length);
return *this;
}
bool operator==(const FixLengthString &other) const { return memcmp(data, other.data, length) == 0; }
};
TEST(MemoryRiver, T2) {
spdlog::set_level(spdlog::level::debug);
auto logger_ptr = spdlog::stderr_color_mt("stderr_logger");
const static size_t string_len = 5;
typedef FixLengthString<string_len> DataType;
std::deque<size_t> index_collection;
std::unordered_map<size_t, std::pair<int, int>> index_track;
size_t interal_id_tot = 0;
const unsigned int RndSeed = 3794; // testing::GTEST_FLAG(random_seed);
std::mt19937 rnd(RndSeed);
remove("/tmp/T2.std");
remove("/tmp/T2.dat");
const int kInfoLength = 100;
{
sol::MemoryRiver<DataType, kInfoLength> STD("/tmp/T2.std");
MemoryRiver<DataType, kInfoLength> mr("/tmp/T2.dat");
int total_opts = 5;
while (total_opts-- > 0) {
int opt = rnd() % 6;
switch (opt) {
case 0: {
// get_info
int idx = 1 + rnd() % kInfoLength;
int std_ans, mr_ans;
STD.get_info(std_ans, idx);
mr.get_info(mr_ans, idx);
EXPECT_EQ(std_ans, mr_ans);
break;
}
case 1: {
// write_info
int idx = 1 + rnd() % kInfoLength;
int val = rnd();
STD.write_info(val, idx);
mr.write_info(val, idx);
break;
}
case 2: {
// write
interal_id_tot++;
index_collection.push_back(interal_id_tot);
DataType tmp;
for (int i = 0; i < string_len; i++) tmp.data[i] = 'a' + rnd() % 26;
tmp.data[string_len - 1] = '\0';
index_track[interal_id_tot].first = STD.write(tmp);
index_track[interal_id_tot].second = mr.write(tmp);
logger_ptr->info("Write: {}", tmp.data);
logger_ptr->info("internal id: {}", interal_id_tot);
logger_ptr->info("index in STD: {}", index_track[interal_id_tot].first);
logger_ptr->info("index in MR: {}", index_track[interal_id_tot].second);
break;
}
case 3: {
// update
if (index_collection.empty()) goto nxt;
size_t selected_internal_id = index_collection[rnd() % index_collection.size()];
DataType tmp;
for (int i = 0; i < string_len; i++) tmp.data[i] = 'a' + rnd() % 26;
tmp.data[string_len - 1] = '\0';
STD.update(tmp, index_track[selected_internal_id].first);
mr.update(tmp, index_track[selected_internal_id].second);
logger_ptr->info("Update: {}", tmp.data);
logger_ptr->info("internal id: {}", selected_internal_id);
logger_ptr->info("index in STD: {}", index_track[selected_internal_id].first);
logger_ptr->info("index in MR: {}", index_track[selected_internal_id].second);
break;
}
case 4: {
// read
if (index_collection.empty()) goto nxt;
size_t selected_internal_id = index_collection[rnd() % index_collection.size()];
DataType std_ans, mr_ans;
STD.read(std_ans, index_track[selected_internal_id].first);
mr.read(mr_ans, index_track[selected_internal_id].second);
logger_ptr->info("Read: {}", selected_internal_id);
logger_ptr->info("MR: read {} from {}", mr_ans.data, index_track[selected_internal_id].second);
logger_ptr->info("STD: read {} from {}", std_ans.data, index_track[selected_internal_id].first);
EXPECT_EQ(std_ans, mr_ans);
}
case 5: {
// Delete
if (index_collection.empty()) goto nxt;
size_t selected_internal_id = index_collection[rnd() % index_collection.size()];
logger_ptr->info("Delete: {}", selected_internal_id);
logger_ptr->info("index in STD: {}", index_track[selected_internal_id].first);
logger_ptr->info("index in MR: {}", index_track[selected_internal_id].second);
STD.Delete(index_track[selected_internal_id].first);
mr.Delete(index_track[selected_internal_id].second);
index_collection.erase(std::find(index_collection.begin(), index_collection.end(), selected_internal_id));
index_track.erase(selected_internal_id);
break;
}
}
nxt:;
}
}
}