ready to fix length maintanence
This commit is contained in:
203
src/int2048.cpp
203
src/int2048.cpp
@ -186,8 +186,8 @@ inline void UnsignedAdd(int2048 &A, const int2048 *const pB,
|
||||
i++) {
|
||||
if (i < (pB->num_length + int2048::kNum - 1) / int2048::kNum)
|
||||
A.val[i] += pB->val[i];
|
||||
if (i + 1 < A.buf_length) A.val[i + 1] += A.val[i] / int2048::kMod;
|
||||
A.val[i] %= int2048::kMod;
|
||||
if (i + 1 < A.buf_length) A.val[i + 1] += A.val[i] / int2048::kStoreBase;
|
||||
A.val[i] %= int2048::kStoreBase;
|
||||
}
|
||||
} else {
|
||||
for (int i = (std::max(A.num_length, pB->num_length) + int2048::kNum - 1) /
|
||||
@ -196,9 +196,9 @@ inline void UnsignedAdd(int2048 &A, const int2048 *const pB,
|
||||
i >= 0; i--) {
|
||||
if (i < (pB->num_length + int2048::kNum - 1) / int2048::kNum)
|
||||
A.val[i] += pB->val[i];
|
||||
if (A.val[i] >= int2048::kMod && i - 1 >= 0) {
|
||||
A.val[i - 1] += A.val[i] / int2048::kMod;
|
||||
A.val[i] %= int2048::kMod;
|
||||
if (A.val[i] >= int2048::kStoreBase && i - 1 >= 0) {
|
||||
A.val[i - 1] += A.val[i] / int2048::kStoreBase;
|
||||
A.val[i] %= int2048::kStoreBase;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -261,20 +261,22 @@ inline void UnsignedMinus(int2048 &A, const int2048 *const pB, bool inverse) {
|
||||
i++) {
|
||||
A.val[i] -= pB->val[i];
|
||||
if (A.val[i] < 0 && i + 1 < A.buf_length) {
|
||||
A.val[i] += int2048::kMod;
|
||||
A.val[i] += int2048::kStoreBase;
|
||||
A.val[i + 1]--;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
int blocks_A = (A.num_length + int2048::kNum - 1) / int2048::kNum;
|
||||
int blocks_B = (pB->num_length + int2048::kNum - 1) / int2048::kNum;
|
||||
if (blocks_A < blocks_B) A.ClaimMem(blocks_A * int2048::kNum);
|
||||
blocks_A = (A.num_length + int2048::kNum - 1) / int2048::kNum;
|
||||
if (blocks_A < blocks_B) {
|
||||
A.ClaimMem(blocks_B * int2048::kNum);
|
||||
blocks_A = blocks_B;
|
||||
}
|
||||
for (int i = (pB->num_length + int2048::kNum - 1) / int2048::kNum - 1;
|
||||
i >= 0; i--) {
|
||||
if (i < blocks_B && i < blocks_A) A.val[i] -= pB->val[i];
|
||||
if (i < blocks_A && A.val[i] < 0 && i - 1 >= 0) {
|
||||
A.val[i] += int2048::kMod;
|
||||
A.val[i] += int2048::kStoreBase;
|
||||
A.val[i - 1]--;
|
||||
}
|
||||
}
|
||||
@ -394,6 +396,63 @@ __int128_t int2048::QuickPow(__int128_t v, long long q) {
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// /**
|
||||
// * @brief Move the number to the left by L digits. That is, v'=v*(10^L)
|
||||
// */
|
||||
// void int2048::LeftMoveBy(int L) {
|
||||
// const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
||||
// 100000, 1000000, 10000000, 100000000};
|
||||
// int big_move = L / int2048::kNum;
|
||||
// int small_move = L % int2048::kNum;
|
||||
// this->ClaimMem(this->num_length + L);
|
||||
// for (int i = this->buf_length - 1; i >= big_move; i--) {
|
||||
// this->val[i] = this->val[i - big_move];
|
||||
// }
|
||||
// for (int i = 0; i < big_move; i++) {
|
||||
// this->val[i] = 0;
|
||||
// }
|
||||
// this->num_length += big_move * int2048::kNum;
|
||||
// if (small_move == 0) return;
|
||||
// for (int i = this->buf_length - 1; i >= 0; i--) {
|
||||
// (this->val[i] *= kPow10[small_move]) %= int2048::kStoreBase;
|
||||
// if (i - 1 >= 0) {
|
||||
// this->val[i] += this->val[i - 1] / kPow10[int2048::kNum - small_move];
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
/**
|
||||
* @brief Move the number to the right by L digits. That is, v'=v//(10^L)
|
||||
*/
|
||||
void int2048::RightMoveBy(int L) {
|
||||
if (L >= this->num_length) {
|
||||
this->num_length = 1;
|
||||
this->val[0] = 0;
|
||||
return;
|
||||
}
|
||||
int big_move = L / int2048::kNum;
|
||||
int small_move = L % int2048::kNum;
|
||||
for (int i = 0; i < this->buf_length - big_move; i++) {
|
||||
this->val[i] = this->val[i + big_move];
|
||||
}
|
||||
for (int i = this->buf_length - big_move; i < this->buf_length; i++) {
|
||||
this->val[i] = 0;
|
||||
}
|
||||
this->num_length -= big_move * int2048::kNum;
|
||||
if (small_move == 0) return;
|
||||
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
||||
100000, 1000000, 10000000, 100000000};
|
||||
for (int i = 0; i < this->buf_length; i++) {
|
||||
this->val[i] /= kPow10[small_move];
|
||||
if (i + 1 < this->buf_length) {
|
||||
this->val[i] += this->val[i + 1] % kPow10[small_move] *
|
||||
kPow10[int2048::kNum - small_move];
|
||||
}
|
||||
}
|
||||
this->num_length -= small_move;
|
||||
}
|
||||
|
||||
void int2048::NTTTransform(__int128_t *a, int NTT_blocks,
|
||||
bool inverse = false) {
|
||||
for (int i = 1, j = 0; i < NTT_blocks; i++) {
|
||||
@ -434,13 +493,26 @@ inline void UnsignedMultiply(int2048 &A, const int2048 *pB,
|
||||
__int128_t *pDA = new __int128_t[NTT_blocks]();
|
||||
__int128_t *pDB = new __int128_t[NTT_blocks]();
|
||||
__int128_t *pDC = new __int128_t[NTT_blocks]();
|
||||
for (int i = 0; i < blocks_of_A; i++) {
|
||||
pDA[i << 1] = A.val[i] % int2048::kNTTBlockBase;
|
||||
pDA[(i << 1) | 1] = A.val[i] / int2048::kNTTBlockBase;
|
||||
}
|
||||
for (int i = 0; i < blocks_of_B; i++) {
|
||||
pDB[i << 1] = pB->val[i] % int2048::kNTTBlockBase;
|
||||
pDB[(i << 1) | 1] = pB->val[i] / int2048::kNTTBlockBase;
|
||||
if (!inverse) {
|
||||
for (int i = 0; i < blocks_of_A; i++) {
|
||||
pDA[i << 1] = A.val[i] % int2048::kNTTBlockBase;
|
||||
pDA[(i << 1) | 1] = A.val[i] / int2048::kNTTBlockBase;
|
||||
}
|
||||
for (int i = 0; i < blocks_of_B; i++) {
|
||||
pDB[i << 1] = pB->val[i] % int2048::kNTTBlockBase;
|
||||
pDB[(i << 1) | 1] = pB->val[i] / int2048::kNTTBlockBase;
|
||||
}
|
||||
} else {
|
||||
pDA[0] = A.val[0];
|
||||
for (int i = 1; i < blocks_of_A; i++) {
|
||||
pDA[i << 1] = A.val[i] % int2048::kNTTBlockBase;
|
||||
pDA[(i << 1) - 1] = A.val[i] / int2048::kNTTBlockBase;
|
||||
}
|
||||
pDB[0] = pB->val[0];
|
||||
for (int i = 1; i < blocks_of_B; i++) {
|
||||
pDB[i << 1] = pB->val[i] % int2048::kNTTBlockBase;
|
||||
pDB[(i << 1) - 1] = pB->val[i] / int2048::kNTTBlockBase;
|
||||
}
|
||||
}
|
||||
A.NTTTransform(pDA, NTT_blocks);
|
||||
A.NTTTransform(pDB, NTT_blocks);
|
||||
@ -465,8 +537,15 @@ inline void UnsignedMultiply(int2048 &A, const int2048 *pB,
|
||||
int flag_store = A.flag;
|
||||
A.ClaimMem(NTT_blocks * 4);
|
||||
memset(A.val, 0, A.buf_length * sizeof(int));
|
||||
for (int i = 0; i < NTT_blocks / 2; i++) {
|
||||
A.val[i] = pDC[(i << 1) | 1] * int2048::kNTTBlockBase + pDC[i << 1];
|
||||
if (!inverse) {
|
||||
for (int i = 0; i < NTT_blocks / 2; i++) {
|
||||
A.val[i] = pDC[(i << 1) | 1] * int2048::kNTTBlockBase + pDC[i << 1];
|
||||
}
|
||||
} else {
|
||||
A.val[0] = pDC[0];
|
||||
for (int i = 1; i < NTT_blocks / 2; i++) {
|
||||
A.val[i] = pDC[(i << 1) - 1] * int2048::kNTTBlockBase + pDC[i << 1];
|
||||
}
|
||||
}
|
||||
A.num_length = NTT_blocks * 4;
|
||||
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
||||
@ -516,35 +595,24 @@ int2048 operator*(int2048 A, const int2048 &B) {
|
||||
A.Multiply(B);
|
||||
return std::move(A);
|
||||
}
|
||||
|
||||
void int2048::RightMoveBy(int L) {
|
||||
if (L >= this->num_length) {
|
||||
this->num_length = 1;
|
||||
this->val[0] = 0;
|
||||
return;
|
||||
void int2048::ProcessHalfBlock() {
|
||||
this->ClaimMem(this->num_length + int2048::kNTTBlockBase);
|
||||
int blocks_num = (this->num_length + int2048::kNum - 1) / int2048::kNum;
|
||||
for (int i = blocks_num - 1; i >= 1; i--) {
|
||||
val[i] /= int2048::kNTTBlockBase;
|
||||
val[i] += (val[i - 1] % int2048::kNTTBlockBase) * int2048::kNTTBlockBase;
|
||||
}
|
||||
int big_move = L / int2048::kNum;
|
||||
int small_move = L % int2048::kNum;
|
||||
for (int i = 0; i < this->buf_length - big_move; i++) {
|
||||
this->val[i] = this->val[i + big_move];
|
||||
}
|
||||
for (int i = this->buf_length - big_move; i < this->buf_length; i++) {
|
||||
this->val[i] = 0;
|
||||
}
|
||||
this->num_length -= big_move * int2048::kNum;
|
||||
if (small_move == 0) return;
|
||||
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
||||
100000, 1000000, 10000000, 100000000};
|
||||
for (int i = 0; i < this->buf_length; i++) {
|
||||
this->val[i] /= kPow10[small_move];
|
||||
if (i + 1 < this->buf_length) {
|
||||
this->val[i] += this->val[i + 1] % kPow10[small_move] *
|
||||
kPow10[int2048::kNum - small_move];
|
||||
}
|
||||
}
|
||||
this->num_length -= small_move;
|
||||
val[0] /= int2048::kNTTBlockBase;
|
||||
}
|
||||
void int2048::RestoreHalfBlock() {
|
||||
int blocks_num = (this->num_length + int2048::kNum - 1) / int2048::kNum;
|
||||
for (int i = 0; i < blocks_num - 1; i++) {
|
||||
val[i] *= int2048::kNTTBlockBase;
|
||||
val[i] %= int2048::kStoreBase;
|
||||
val[i] += val[i + 1] / int2048::kNTTBlockBase;
|
||||
}
|
||||
(val[blocks_num - 1] *= int2048::kNTTBlockBase) %= int2048::kStoreBase;
|
||||
}
|
||||
|
||||
inline void UnsignedDivide(int2048 &A, const int2048 *pB) {
|
||||
int L1 = A.num_length, L2 = pB->num_length;
|
||||
if (&A == pB) throw "UnsignedDivide: A and B are the same object";
|
||||
@ -572,8 +640,10 @@ inline void UnsignedDivide(int2048 &A, const int2048 *pB) {
|
||||
int2048 inverse_B(*pB);
|
||||
for (int i = 0; (i << 1) < (pow_B + 1); i++)
|
||||
std::swap(inverse_B.val[i], inverse_B.val[pow_B - i]);
|
||||
int2048 x(int2048::kMod);
|
||||
assert(x.val[1] == 1);
|
||||
int2048 x(
|
||||
int2048::kStoreBase *
|
||||
(long long)std::max(1, int2048::kStoreBase / (inverse_B.val[0] + 1)));
|
||||
assert(x.val[1] == std::max(1, int2048::kStoreBase / (inverse_B.val[0] + 1)));
|
||||
int *store[2];
|
||||
store[0] = new int[pow_A + 5]();
|
||||
store[1] = new int[pow_A + 5]();
|
||||
@ -582,11 +652,41 @@ inline void UnsignedDivide(int2048 &A, const int2048 *pB) {
|
||||
store[0][i] = A.val[i];
|
||||
store[1][i] = -1;
|
||||
}
|
||||
int inverseB_error = 0;
|
||||
if (inverse_B.val[0] >= int2048::kNTTBlockBase) {
|
||||
inverseB_error = 1;
|
||||
inverse_B.ProcessHalfBlock();
|
||||
}
|
||||
while (true) {
|
||||
int2048 invsere_two(2), tmp_x(x);
|
||||
int2048 inverse_two(2), tmp_x(x);
|
||||
int tmp_x_error = 0;
|
||||
if (tmp_x.val[0] >= int2048::kNTTBlockBase) {
|
||||
tmp_x_error = 1;
|
||||
tmp_x.ProcessHalfBlock();
|
||||
}
|
||||
UnsignedMultiply(tmp_x, &inverse_B, true);
|
||||
UnsignedMinus(invsere_two, &tmp_x, true);
|
||||
UnsignedMultiply(x, &invsere_two, true);
|
||||
tmp_x.num_length =
|
||||
((tmp_x.num_length + int2048::kNum - 1) / int2048::kNum) *
|
||||
int2048::kNum;
|
||||
for (int i = 0; i < tmp_x_error + inverseB_error; i++)
|
||||
tmp_x.RestoreHalfBlock();
|
||||
UnsignedMinus(inverse_two, &tmp_x, true);
|
||||
inverse_two.num_length =
|
||||
((inverse_two.num_length + int2048::kNum - 1) / int2048::kNum) *
|
||||
int2048::kNum;
|
||||
int inverse_two_error = 0, x_error = 0;
|
||||
if (inverse_two.val[0] >= int2048::kNTTBlockBase) {
|
||||
inverse_two_error = 1;
|
||||
inverse_two.ProcessHalfBlock();
|
||||
}
|
||||
if (x.val[0] >= int2048::kNTTBlockBase) {
|
||||
x_error = 1;
|
||||
x.ProcessHalfBlock();
|
||||
}
|
||||
UnsignedMultiply(x, &inverse_two, true);
|
||||
x.num_length =
|
||||
((x.num_length + int2048::kNum - 1) / int2048::kNum) * int2048::kNum;
|
||||
for (int i = 0; i < x_error + inverse_two_error; i++) x.RestoreHalfBlock();
|
||||
/**
|
||||
* now x is the next x, store[tot] stores last x, store[tot^1] stores the x
|
||||
* previous to store[x]
|
||||
@ -617,6 +717,9 @@ inline void UnsignedDivide(int2048 &A, const int2048 *pB) {
|
||||
else
|
||||
store[tot][i] = 0;
|
||||
}
|
||||
fprintf(stderr, "x: ");
|
||||
for (int i = 0; i < blocks_of_x; i++) fprintf(stderr, "%08d ", x.val[i]);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
delete[] store[0];
|
||||
delete[] store[1];
|
||||
|
Reference in New Issue
Block a user