/** * @file int2048.cpp --- 2048-bit integer class implementation * * @details This file contains the implementation of the 2048-bit integer class. * * Codesytle: This file is written in a sytle mainly based on Google C++ Style * Guide. As I use Clang-format to format my code, so the code style may be a * little bit strange sometimes, in that case I'll manually format the * code.What's sepecial is the comment: * 1. Multi-line comments are always before the code they comment on. * Usually the code they comment on is a complex procedure,like the definition * of a function,a class or a variable with complex operation. If a multi-line * comment is in one line, it will start with "/*" instead of "/**",otherwise it * will start with "/**" and in the format of Doxygen. * 2. Single-line comments are always after the code they comment on. * Usually they are in the same line with the code they comment on,but sometimes * they may come in the next lines. single-line comments shouldn't exceed 3 * lines as they are intended to be short and easy to understand. * 3. Temporary disabled code will be marked with "//" in the front of each * 4. Some comments have special meanings,like "//TODO", "//FIXME", "//XXX","// * clang-format off" and "// clang-format on". They are not controlled by the * previous rules. */ #include "int2048.h" #include #include #include #include #include static_assert(sizeof(int) == 4, "sizeof(int) != 4"); static_assert(sizeof(long long) == 8, "sizeof(long long)!=8"); namespace sjtu { // 构造函数 int2048::int2048() { // 实现构造函数逻辑 buf_length = kDefaultLength; val = new int[buf_length](); flag = 1; num_length = 1; } int2048::~int2048() { // 实现析构函数逻辑 if (val != nullptr) delete[] val; } int2048::int2048(long long input_value) { // 实现构造函数逻辑 buf_length = kDefaultLength; val = new int[buf_length](); if (input_value < 0) { flag = -1; input_value = -input_value; } else flag = 1; if (input_value == 0) { num_length = 1; return; } num_length = 0; const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; while (input_value > 0) { val[num_length / kNum] += (input_value % 10) * kPow10[num_length % kNum]; input_value /= 10; num_length++; } } int2048::int2048(const std::string &input_value) { // 实现构造函数逻辑 buf_length = (input_value.length() + kNum - 1) / kNum * kMemAdditionScalar; val = new int[buf_length](); flag = 1; num_length = 0; if (input_value[0] == '-') { flag = -1; } const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; int read_highest_pos = (flag > 0 ? 0 : 1); while (input_value[read_highest_pos] == '0' && read_highest_pos + 1 < input_value.length()) read_highest_pos++; for (int i = input_value.length() - 1; i >= read_highest_pos; i--) { val[num_length / kNum] += (input_value[i] - '0') * kPow10[num_length % kNum]; num_length++; } if (num_length == 1 && val[0] == 0) flag = 1; } int2048::int2048(const int2048 &input_value) { buf_length = input_value.buf_length; val = new int[buf_length](); memcpy(val, input_value.val, buf_length * sizeof(int)); flag = input_value.flag; num_length = input_value.num_length; } int2048::int2048(int2048 &&input_value) noexcept { buf_length = input_value.buf_length; val = input_value.val; flag = input_value.flag; num_length = input_value.num_length; input_value.buf_length = kDefaultLength; input_value.flag = 1; input_value.num_length = 1; input_value.val = new int[input_value.buf_length](); } // 读入一个大整数 void int2048::read(const std::string &input_value) { delete[] val; buf_length = (input_value.length() + kNum - 1) / kNum * kMemAdditionScalar; val = new int[buf_length](); flag = 1; num_length = 0; if (input_value[0] == '-') { flag = -1; } const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; int read_highest_pos = (flag > 0 ? 0 : 1); while (input_value[read_highest_pos] == '0' && read_highest_pos + 1 < input_value.length()) read_highest_pos++; for (int i = input_value.length() - 1; i >= read_highest_pos; i--) { val[num_length / kNum] += (input_value[i] - '0') * kPow10[num_length % kNum]; num_length++; } if (num_length == 1 && val[0] == 0) flag = 1; } // 输出储存的大整数,无需换行 void int2048::print() { // 实现输出逻辑 char *buf = new char[num_length + 5]; char *p = buf; if (flag == -1) *p++ = '-'; const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; for (int i = num_length - 1; i >= 0; i--) *p++ = char('0' + val[i / int2048::kNum] / kPow10[i % int2048::kNum] % 10); *p++ = 0; std::cout << buf; delete[] buf; } /** * @brief Claim memory for the number. * * @details warning: ClaimMem doesn't change num_length, so you should change it * manually. */ void int2048::ClaimMem(size_t number_length) { size_t new_number_blocks = (number_length + kNum - 1) / kNum; if (new_number_blocks > buf_length) { int *new_val = new int[new_number_blocks * kMemAdditionScalar](); memcpy(new_val, val, buf_length * sizeof(int)); delete[] val; val = new_val; buf_length = new_number_blocks * kMemAdditionScalar; } else if (new_number_blocks * kMemDeleteScalar < buf_length) { int *new_val = new int[new_number_blocks * kMemAdditionScalar](); memcpy(new_val, val, new_number_blocks * sizeof(int)); delete[] val; val = new_val; buf_length = new_number_blocks * kMemAdditionScalar; } } inline int UnsignedCmp(const int2048 &A, const int2048 &B) { if (A.num_length != B.num_length) return A.num_length < B.num_length ? -1 : 1; int number_of_blocks = (A.num_length + int2048::kNum - 1) / int2048::kNum; for (int i = number_of_blocks - 1; i >= 0; i--) if (A.val[i] != B.val[i]) return A.val[i] < B.val[i] ? -1 : 1; return 0; } inline void UnsignedMinus(int2048 &, const int2048 *, bool inverse = false); inline void UnsignedAdd(int2048 &A, const int2048 *const pB, bool inverse = false) { if (&A == pB) throw "UnsignedAdd: A and B are the same object"; if (!inverse) { A.ClaimMem(std::max(A.num_length, pB->num_length) + 2); for (int i = 0; i < (std::max(A.num_length, pB->num_length) + int2048::kNum - 1) / int2048::kNum; i++) { if (i < (pB->num_length + int2048::kNum - 1) / int2048::kNum) A.val[i] += pB->val[i]; if (i + 1 < A.buf_length) A.val[i + 1] += A.val[i] / int2048::kStoreBase; A.val[i] %= int2048::kStoreBase; } A.num_length = std::max(A.num_length, pB->num_length); const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; if (A.val[A.num_length / int2048::kNum] / kPow10[A.num_length % int2048::kNum] > 0) A.num_length++; } else { assert(("this code shouldn't be executed", 0)); assert(A.num_length % int2048::kNum == 0); assert(pB->num_length % int2048::kNum == 0); A.ClaimMem(std::max(A.num_length, pB->num_length)); A.num_length = std::max(A.num_length, pB->num_length); for (int i = std::max(A.num_length, pB->num_length) / int2048::kNum - 1; i >= 0; i--) { if (i < pB->num_length / int2048::kNum) A.val[i] += pB->val[i]; if (A.val[i] >= int2048::kStoreBase && i - 1 >= 0) { A.val[i - 1] += A.val[i] / int2048::kStoreBase; A.val[i] %= int2048::kStoreBase; } } while (A.num_length > int2048::kNum && A.val[A.num_length / int2048::kNum - 1] == 0) A.num_length -= int2048::kNum; } } // 加上一个大整数 int2048 &int2048::add(const int2048 &B) { // 实现加法逻辑 const int2048 *pB = &B; if (this->flag == pB->flag) { if (this == &B) pB = new int2048(B); UnsignedAdd(*this, pB); } else if (this->flag == 1 && pB->flag == -1) { int cmp = UnsignedCmp(*this, *pB); if (cmp >= 0) { if (this == &B) pB = new int2048(B); UnsignedMinus(*this, pB); this->flag = 1; } else { int2048 new_B = std::move(*this); *this = B; UnsignedMinus(*this, &new_B); this->flag = -1; } } else if (this->flag == -1 && pB->flag == 1) { int cmp = UnsignedCmp(*this, *pB); if (cmp >= 0) { if (this == &B) pB = new int2048(B); UnsignedMinus(*this, pB); this->flag = -1; if (this->num_length == 1 && this->val[0] == 0) this->flag = 1; } else { int2048 new_B = std::move(*this); *this = B; UnsignedMinus(*this, &new_B); this->flag = 1; } } if (pB != &B) delete pB; return *this; } // 返回两个大整数之和 int2048 add(int2048 A, const int2048 &B) { // 实现加法逻辑 return std::move(A.add(B)); } inline void UnsignedMinus(int2048 &A, const int2048 *const pB, bool inverse) { if (&A == pB) throw "UnsignedMinus: A and B are the same object"; if (!inverse) { for (int i = 0; i < (pB->num_length + int2048::kNum - 1) / int2048::kNum; i++) { A.val[i] -= pB->val[i]; if (A.val[i] < 0 && i + 1 < A.buf_length) { A.val[i] += int2048::kStoreBase; A.val[i + 1]--; } } const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; int new_length = 0; for (int i = 0; i < A.num_length; i++) if (A.val[i / int2048::kNum] / kPow10[i % int2048::kNum] > 0) new_length = i + 1; A.num_length = new_length; if (A.num_length == 0) A.num_length = 1; A.ClaimMem(A.num_length); } else { assert(A.num_length % int2048::kNum == 0); assert(pB->num_length % int2048::kNum == 0); int blocks_A = A.num_length / int2048::kNum; int blocks_B = pB->num_length / int2048::kNum; if (blocks_A < blocks_B) { A.ClaimMem(blocks_B * int2048::kNum); A.num_length = blocks_B * int2048::kNum; blocks_A = blocks_B; } for (int i = (pB->num_length + int2048::kNum - 1) / int2048::kNum - 1; i >= 0; i--) { if (i < blocks_B && i < blocks_A) A.val[i] -= pB->val[i]; if (i < blocks_A && A.val[i] < 0 && i - 1 >= 0) { A.val[i] += int2048::kStoreBase; A.val[i - 1]--; } } while (A.num_length > int2048::kNum && A.val[A.num_length / int2048::kNum - 1] == 0) A.num_length -= int2048::kNum; A.ClaimMem(A.num_length); } } // 减去一个大整数 int2048 &int2048::minus(const int2048 &B) { // 实现减法逻辑 const int2048 *pB = &B; if (this->flag == B.flag) { int cmp = UnsignedCmp(*this, *pB); if (cmp >= 0) { if (this == &B) pB = new int2048(B); UnsignedMinus(*this, pB); if (this->num_length == 1 && this->val[0] == 0) this->flag = 1; } else { int2048 new_B = std::move(*this); *this = B; UnsignedMinus(*this, &new_B); this->flag = -this->flag; if (this->num_length == 1 && this->val[0] == 0) this->flag = 1; } } else { if (this == &B) pB = new int2048(B); UnsignedAdd(*this, pB); } if (pB != &B) delete pB; return *this; } // 返回两个大整数之差 int2048 minus(int2048 A, const int2048 &B) { // 实现减法逻辑 return std::move(A.minus(B)); } // 运算符重载 int2048 int2048::operator+() const { // 实现一元加法逻辑 return std::move(int2048(*this)); } int2048 int2048::operator-() const { // 实现一元减法逻辑 int2048 ret(*this); if (!(ret.num_length == 1 && ret.val[0] == 0)) ret.flag = -ret.flag; return std::move(ret); } int2048 &int2048::operator=(const int2048 &B) { // 实现赋值运算符逻辑 // similar to int2048::int2048(const int2048 &input_value) if (this == &B) return *this; delete[] val; buf_length = B.buf_length; val = new int[buf_length](); memcpy(val, B.val, buf_length * sizeof(int)); flag = B.flag; num_length = B.num_length; return *this; } int2048 &int2048::operator=(int2048 &&B) noexcept { // 实现移动赋值运算符逻辑 if (this == &B) return *this; delete[] val; buf_length = B.buf_length; val = B.val; flag = B.flag; num_length = B.num_length; B.buf_length = kDefaultLength; B.flag = 1; B.num_length = 1; B.val = new int[B.buf_length](); return *this; } int2048 &int2048::operator+=(const int2048 &B) { // 实现复合加法逻辑 return this->add(B); } int2048 operator+(int2048 A, const int2048 &B) { // 实现加法逻辑 A.add(B); return std::move(A); } int2048 &int2048::operator-=(const int2048 &B) { // 实现复合减法逻辑 return this->minus(B); } int2048 operator-(int2048 A, const int2048 &B) { // 实现减法逻辑 A.minus(B); return std::move(A); } __int128_t int2048::QuickPow(__int128_t v, long long q) { __int128_t ret = 1; v %= int2048::kNTTMod; while (q > 0) { if (q & 1) (ret *= v) %= int2048::kNTTMod; (v *= v) %= int2048::kNTTMod; q >>= 1; } return ret; } // /** // * @brief Move the number to the left by L digits. That is, v'=v*(10^L) // */ // void int2048::LeftMoveBy(int L) { // const static int kPow10[9] = {1, 10, 100, 1000, 10000, // 100000, 1000000, 10000000, 100000000}; // int big_move = L / int2048::kNum; // int small_move = L % int2048::kNum; // this->ClaimMem(this->num_length + L); // for (int i = this->buf_length - 1; i >= big_move; i--) { // this->val[i] = this->val[i - big_move]; // } // for (int i = 0; i < big_move; i++) { // this->val[i] = 0; // } // this->num_length += big_move * int2048::kNum; // if (small_move == 0) return; // for (int i = this->buf_length - 1; i >= 0; i--) { // (this->val[i] *= kPow10[small_move]) %= int2048::kStoreBase; // if (i - 1 >= 0) { // this->val[i] += this->val[i - 1] / kPow10[int2048::kNum - small_move]; // } // } // } /** * @brief Move the number to the right by L digits. That is, v'=v//(10^L) */ void int2048::RightMoveBy(int L) { if (L >= this->num_length) { this->num_length = 1; this->val[0] = 0; return; } int big_move = L / int2048::kNum; int small_move = L % int2048::kNum; for (int i = 0; i < this->buf_length - big_move; i++) { this->val[i] = this->val[i + big_move]; } for (int i = this->buf_length - big_move; i < this->buf_length; i++) { this->val[i] = 0; } this->num_length -= big_move * int2048::kNum; if (small_move == 0) return; const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; for (int i = 0; i < this->buf_length; i++) { this->val[i] /= kPow10[small_move]; if (i + 1 < this->buf_length) { this->val[i] += this->val[i + 1] % kPow10[small_move] * kPow10[int2048::kNum - small_move]; } } this->num_length -= small_move; } void int2048::NTTTransform(__int128_t *a, int NTT_blocks, bool inverse = false) { for (int i = 1, j = 0; i < NTT_blocks; i++) { int bit = NTT_blocks >> 1; while (j >= bit) { j -= bit; bit >>= 1; } j += bit; if (i < j) std::swap(a[i], a[j]); } for (int len = 2; len <= NTT_blocks; len <<= 1) { __int128_t wlen = QuickPow(int2048::kNTTRoot, (int2048::kNTTMod - 1) / len); if (inverse) wlen = QuickPow(wlen, int2048::kNTTMod - 2); for (int i = 0; i < NTT_blocks; i += len) { __int128_t w = 1; for (int j = 0; j < len / 2; j++) { __int128_t u = a[i + j], v = a[i + j + len / 2] * w % int2048::kNTTMod; a[i + j] = (u + v) % int2048::kNTTMod; a[i + j + len / 2] = (u - v + int2048::kNTTMod) % int2048::kNTTMod; (w *= wlen) %= int2048::kNTTMod; } } } if (inverse) { __int128_t inv = QuickPow(NTT_blocks, int2048::kNTTMod - 2); for (int i = 0; i < NTT_blocks; i++) (a[i] *= inv) %= int2048::kNTTMod; } } inline void UnsignedMultiply(int2048 &A, const int2048 *pB, bool inverse = false, int lenght_limit = 0) { if (&A == pB) throw "UnsignedMultiply: A and B are the same object"; int blocks_of_A = ((A.num_length + int2048::kNum - 1) / int2048::kNum); int blocks_of_B = ((pB->num_length + int2048::kNum - 1) / int2048::kNum); if (inverse) { assert(pB->num_length % int2048::kNum == 0); lenght_limit = std::min(lenght_limit, pB->num_length); blocks_of_B = lenght_limit / int2048::kNum; // assert(blocks_of_B == // ((pB->num_length + int2048::kNum - 1) / int2048::kNum)); } int max_blocks = blocks_of_A + blocks_of_B; int NTT_blocks = 2; while (NTT_blocks < (max_blocks << 1)) NTT_blocks <<= 1; __int128_t *pDA = new __int128_t[NTT_blocks](); __int128_t *pDB = new __int128_t[NTT_blocks](); __int128_t *pDC = new __int128_t[NTT_blocks](); if (!inverse) { for (int i = 0; i < blocks_of_A; i++) { pDA[i << 1] = A.val[i] % int2048::kNTTBlockBase; pDA[(i << 1) | 1] = A.val[i] / int2048::kNTTBlockBase; } for (int i = 0; i < blocks_of_B; i++) { pDB[i << 1] = pB->val[i] % int2048::kNTTBlockBase; pDB[(i << 1) | 1] = pB->val[i] / int2048::kNTTBlockBase; } } else { assert(A.num_length % int2048::kNum == 0); assert(pB->num_length % int2048::kNum == 0); pDA[0] = A.val[0]; for (int i = 1; i < blocks_of_A; i++) { pDA[i << 1] = A.val[i] % int2048::kNTTBlockBase; pDA[(i << 1) - 1] = A.val[i] / int2048::kNTTBlockBase; } pDB[0] = pB->val[0]; for (int i = 1; i < blocks_of_B; i++) { pDB[i << 1] = pB->val[i] % int2048::kNTTBlockBase; pDB[(i << 1) - 1] = pB->val[i] / int2048::kNTTBlockBase; } } A.NTTTransform(pDA, NTT_blocks); A.NTTTransform(pDB, NTT_blocks); for (int i = 0; i < NTT_blocks; i++) pDC[i] = (pDA[i] * pDB[i]) % int2048::kNTTMod; A.NTTTransform(pDC, NTT_blocks, true); if (!inverse) { for (int i = 0; i < NTT_blocks - 1; i++) { pDC[i + 1] += pDC[i] / int2048::kNTTBlockBase; pDC[i] %= int2048::kNTTBlockBase; } if (pDC[NTT_blocks - 1] >= int2048::kNTTBlockBase) throw "UnsignedMultiply: NTT result overflow"; } else { for (int i = NTT_blocks - 1; i > 0; i--) { if (i - 1 >= 0) pDC[i - 1] += pDC[i] / int2048::kNTTBlockBase; pDC[i] %= int2048::kNTTBlockBase; } if (pDC[0] >= int2048::kNTTBlockBase) throw "UnsignedMultiply: NTT result overflow"; } int flag_store = A.flag; A.ClaimMem(NTT_blocks * 4); memset(A.val, 0, A.buf_length * sizeof(int)); if (!inverse) { for (int i = 0; i < NTT_blocks / 2; i++) { A.val[i] = pDC[(i << 1) | 1] * int2048::kNTTBlockBase + pDC[i << 1]; } } else { A.val[0] = pDC[0]; for (int i = 1; i < NTT_blocks / 2; i++) { A.val[i] = pDC[(i << 1) - 1] * int2048::kNTTBlockBase + pDC[i << 1]; } } A.num_length = NTT_blocks * 4; if (!inverse) { const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; while (A.val[(A.num_length - 1) / int2048::kNum] / kPow10[(A.num_length - 1) % int2048::kNum] == 0) { A.num_length--; if (A.num_length == 0) { A.num_length = 1; break; } } } else { while (A.num_length > int2048::kNum && A.val[A.num_length / int2048::kNum - 1] == 0) A.num_length -= int2048::kNum; A.ClaimMem(A.num_length); } delete[] pDA; delete[] pDB; delete[] pDC; } int2048 &int2048::Multiply(const int2048 &B) { // 实现复合乘法逻辑 const int2048 *pB = &B; if (this == &B) pB = new int2048(B); if ((this->num_length == 1 && this->val[0] == 0) || (pB->num_length == 1 && pB->val[0] == 0)) { *this = std::move(int2048(0)); if (pB != &B) delete pB; return *this; } this->flag = this->flag * pB->flag; UnsignedMultiply(*this, pB); if (pB != &B) delete pB; return *this; } int2048 Multiply(int2048 A, const int2048 &B) { // 实现乘法逻辑 return std::move(A.Multiply(B)); } int2048 &int2048::operator*=(const int2048 &B) { // 实现复合乘法逻辑 return this->Multiply(B); } int2048 operator*(int2048 A, const int2048 &B) { // 实现乘法逻辑 A.Multiply(B); return std::move(A); } void int2048::ProcessHalfBlock() { assert(this->num_length % int2048::kNum == 0); this->ClaimMem(this->num_length + int2048::kNum); this->num_length = this->num_length + int2048::kNum; assert(this->num_length % int2048::kNum == 0); int blocks_num = this->num_length / int2048::kNum; for (int i = blocks_num - 1; i >= 1; i--) { val[i] /= int2048::kNTTBlockBase; val[i] += (val[i - 1] % int2048::kNTTBlockBase) * int2048::kNTTBlockBase; } val[0] /= int2048::kNTTBlockBase; } void int2048::RestoreHalfBlock() { assert(this->num_length % int2048::kNum == 0); int blocks_num = this->num_length / int2048::kNum; for (int i = 0; i < blocks_num - 1; i++) { val[i] = ((long long)val[i] * int2048::kNTTBlockBase) % int2048::kStoreBase; val[i] += val[i + 1] / int2048::kNTTBlockBase; } val[blocks_num - 1] = ((long long)val[blocks_num - 1] * int2048::kNTTBlockBase) % int2048::kStoreBase; while (this->num_length > 0 && val[this->num_length / int2048::kNum - 1] == 0) this->num_length -= int2048::kNum; } inline void UnsignedDivide(int2048 &A, const int2048 *pB) { int L1 = A.num_length, L2 = pB->num_length; if (&A == pB) throw "UnsignedDivide: A and B are the same object"; if (2 * L1 - L2 - 1 < 0) { A = std::move(int2048(0)); return; } if (UnsignedCmp(A, *pB) < 0) { A = std::move(int2048(0)); return; } /** * Now pre-process has done. We can start the main algorithm: * 1. Convert B to scientific counting method and process the index. * 2. In the state of reversing, calculate 1/B' using Newton-Raphson method. * 3. Reverse the iterative results again and calculate the answer. * * Warning: in reversed mode, num_length has no exact meaning, just operate a * block as a whole */ int2048 origin_A(A); int pow_A = (L1 + int2048::kNum - 1) / int2048::kNum - 1; int pow_B = (L2 + int2048::kNum - 1) / int2048::kNum - 1; // pow_B+1 is the number of blocks (with number) of B' int2048 inverse_B(*pB); inverse_B.num_length = (inverse_B.num_length + int2048::kNum - 1) / int2048::kNum * int2048::kNum; for (int i = 0; (i << 1) < (pow_B + 1); i++) std::swap(inverse_B.val[i], inverse_B.val[pow_B - i]); int2048 x( int2048::kStoreBase * (long long)std::max(1, int2048::kStoreBase / (inverse_B.val[0] + 1))); assert(x.val[1] == std::max(1, int2048::kStoreBase / (inverse_B.val[0] + 1))); x.num_length = 2 * int2048::kNum; int *store[2]; store[0] = new int[pow_A + 5](); store[1] = new int[pow_A + 5](); int tot = 0; for (int i = 0; i < pow_A + 1; i++) { store[0][i] = A.val[i]; store[1][i] = -1; } int inverseB_error = 0; if (inverse_B.val[0] >= int2048::kNTTBlockBase) { inverseB_error = 1; inverse_B.ProcessHalfBlock(); } while (true) { int2048 inverse_two(2), tmp_x(x); inverse_two.num_length = int2048::kNum; int tmp_x_error = 0; if (tmp_x.val[0] >= int2048::kNTTBlockBase) { tmp_x_error = 1; tmp_x.ProcessHalfBlock(); } assert(tmp_x.num_length % int2048::kNum == 0); assert(inverse_B.num_length % int2048::kNum == 0); UnsignedMultiply(tmp_x, &inverse_B, true, tmp_x.num_length + 3 * int2048::kNum); for (int i = 0; i < tmp_x_error + inverseB_error; i++) tmp_x.RestoreHalfBlock(); UnsignedMinus(inverse_two, &tmp_x, true); int inverse_two_error = 0, x_error = 0; if (inverse_two.val[0] >= int2048::kNTTBlockBase) { inverse_two_error = 1; inverse_two.ProcessHalfBlock(); } if (x.val[0] >= int2048::kNTTBlockBase) { x_error = 1; x.ProcessHalfBlock(); } UnsignedMultiply(x, &inverse_two, true, inverse_two.num_length); for (int i = 0; i < x_error + inverse_two_error; i++) x.RestoreHalfBlock(); /** * now x is the next x, store[tot] stores last x, store[tot^1] stores the x * previous to store[x] */ int blocks_of_x = (x.num_length + int2048::kNum - 1) / int2048::kNum; if (blocks_of_x > pow_A + 3) { x.ClaimMem((pow_A + 3) * int2048::kNum); x.num_length = (pow_A + 3) * int2048::kNum; blocks_of_x = pow_A + 3; } bool pre_same = true, pre_pre_same = true; for (int i = 0; i < pow_A + 3; i++) { if (store[tot][i] != (i < blocks_of_x ? x.val[i] : 0)) { pre_same = false; break; } } for (int i = 0; i < pow_A + 3; i++) { if (store[tot ^ 1][i] != (i < blocks_of_x ? x.val[i] : 0)) { pre_pre_same = false; break; } } if (pre_pre_same || pre_same) break; tot ^= 1; for (int i = 0; i < pow_A + 3; i++) { if (i < blocks_of_x) store[tot][i] = x.val[i]; else store[tot][i] = 0; } // std::cerr << "length of x" << x.num_length << std::endl; // fprintf(stderr, "x: "); // for (int i = 0; i < blocks_of_x; i++) fprintf(stderr, "%08d ", x.val[i]); // fprintf(stderr, "\n"); } delete[] store[0]; delete[] store[1]; /** * Now reverse x back. */ int blocks_of_x = (x.num_length + int2048::kNum - 1) / int2048::kNum; int pow_x = blocks_of_x - 1; for (int i = 0; i < blocks_of_x / 2; i++) std::swap(x.val[i], x.val[blocks_of_x - i - 1]); x.num_length = blocks_of_x * int2048::kNum; const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; /*Now get the accurate x.num_length for future computing*/ while (x.num_length > 0 && x.val[(x.num_length - 1) / int2048::kNum] / kPow10[(x.num_length - 1) % int2048::kNum] == 0) x.num_length--; UnsignedMultiply(A, &x); A.RightMoveBy((pow_B + pow_x) * int2048::kNum); /*Now we begin to process error*/ int2048 tmp(*pB), kOne(1); UnsignedMultiply(tmp, &A); while (UnsignedCmp(origin_A, tmp) < 0) { UnsignedMinus(A, &kOne); UnsignedMinus(tmp, pB); } UnsignedMinus(origin_A, &tmp); while (UnsignedCmp(origin_A, *pB) >= 0) { UnsignedAdd(A, &kOne); UnsignedMinus(origin_A, pB); } } int2048 &int2048::Divide(const int2048 &B) { if (this == &B) { *this = std::move(int2048(1)); return *this; } if (B.num_length == 1 && B.val[0] == 0) { *this = std::move(int2048(0)); return *this; // throw "Divide: divide by zero"; } int2048 origin_A(*this); int flag_store = this->flag * B.flag; UnsignedDivide(*this, &B); this->flag = flag_store; if (this->flag == -1) { if (origin_A != (*this) * B) { *this -= 1; } } if (this->num_length == 1 && this->val[0] == 0) this->flag = 1; return *this; } int2048 Divide(int2048 A, const int2048 &B) { A.Divide(B); return std::move(A); } int2048 &int2048::operator/=(const int2048 &B) { // 实现复合除法逻辑 return this->Divide(B); } int2048 operator/(int2048 A, const int2048 &B) { // 实现除法逻辑 A.Divide(B); return std::move(A); } int2048 &int2048::operator%=(const int2048 &B) { // 实现复合取模逻辑 int2048 C(*this); C.Divide(B); this->minus(C.Multiply(B)); return *this; } int2048 operator%(int2048 A, const int2048 &B) { // 实现取模逻辑 int2048 C(A); C.Divide(B); A.minus(C.Multiply(B)); return std::move(A); } std::istream &operator>>(std::istream &stream, int2048 &V) { // 实现输入运算符逻辑 std::string v_str; stream >> v_str; V.read(v_str); return stream; } std::ostream &operator<<(std::ostream &stream, const int2048 &v) { // 实现输出运算符逻辑 char *buf = new char[v.num_length + 5]; char *p = buf; if (v.flag == -1) *p++ = '-'; const static int kPow10[9] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000}; for (int i = v.num_length - 1; i >= 0; i--) *p++ = char('0' + v.val[i / int2048::kNum] / kPow10[i % int2048::kNum] % 10); *p++ = 0; stream << buf; delete[] buf; return stream; } bool operator==(const int2048 &A, const int2048 &B) { // 实现等于运算符逻辑 if (A.flag != B.flag) return false; return UnsignedCmp(A, B) == 0; } bool operator!=(const int2048 &A, const int2048 &B) { // 实现不等于运算符逻辑 if (A.flag != B.flag) return true; return UnsignedCmp(A, B) != 0; } bool operator<(const int2048 &A, const int2048 &B) { // 实现小于运算符逻辑 if (A.flag != B.flag) return A.flag < B.flag; int cmp = UnsignedCmp(A, B); if (A.flag == 1) return cmp < 0; else return cmp > 0; } bool operator>(const int2048 &A, const int2048 &B) { // 实现大于运算符逻辑 if (A.flag != B.flag) return A.flag > B.flag; int cmp = UnsignedCmp(A, B); if (A.flag == 1) return cmp > 0; else return cmp < 0; } bool operator<=(const int2048 &A, const int2048 &B) { // 实现小于等于运算符逻辑 if (A.flag != B.flag) return A.flag < B.flag; int cmp = UnsignedCmp(A, B); if (A.flag == 1) return cmp <= 0; else return cmp >= 0; } bool operator>=(const int2048 &A, const int2048 &B) { // 实现大于等于运算符逻辑 if (A.flag != B.flag) return A.flag > B.flag; int cmp = UnsignedCmp(A, B); if (A.flag == 1) return cmp >= 0; else return cmp <= 0; } } // namespace sjtu