Files
BH2023-Minesweeper/src/include/client.h
2023-09-28 09:29:22 +08:00

410 lines
15 KiB
C++

#ifndef CLIENT_H
#define CLIENT_H
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <utility>
#include <vector>
extern int rows; // The count of rows of the game map
extern int columns; // The count of columns of the game map
// You can not use any other external variables except for rows and columns.
/**
* @brief The definition of function Execute(int, int)
*
* @details This function is designed to take a step when player the client's
* (or player's) role, and the implementation of it has been finished by TA. (I
* hope my comments in code would be easy to understand T_T) If you do not
* understand the contents, please ask TA for help immediately!!!
*
* @param row The row coordinate (0-based) of the block to be visited.
* @param column The column coordinate (0-based) of the block to be visited.
*/
void Execute(int row, int column);
/**
* @brief The definition of function InitGame()
*
* @details This function is designed to initialize the game. It should be
* called at the beginning of the game, which will read the scale of the game
* map and the first step taken by the server (see README).
*/
void InitGame() {
int first_row, first_column;
std::cin >> first_row >> first_column;
Execute(first_row, first_column);
}
/**
* @brief The definition of function ReadMap()
*
* @details This function is designed to read the game map from stdin when
* playing the client's (or player's) role. Since the client (or player) can
* only get the limited information of the game map, so if there is a 3 * 3 map
* as above and only the block (2, 0) has been visited, the stdin would be
* ???
* 12?
* 01?
*/
namespace Client {
const unsigned int RndSeed = std::random_device{}();
std::mt19937 RawRnd(RndSeed); // a basic random generator
const int max_size = 35;
char game_map[max_size][max_size]; // store the raw game map in format of char
std::queue<std::pair<int, int> >
no_mine_block_to_be_clicked; // store the block that definitely has no mine
// and not yet clicked
int map_status[max_size]
[max_size]; // store the status of each block(processed version),
// 0 means unknown , -1 means has mine, 1 means no
// mine and not yet clicked, and 2 means has been
// clicked Note that if some block is found to be
// definitely has no mine or has mine, it will be
// marked as known even if it is not clicked. In
// conclusion, if map_status[i][j] == 0, then
// game_map[i][j] == '?'. If map_status[i][j] == -1,
// then game_map[i][j] == '?', and it will never be
// clicked. If map_status[i][j] == 1, then
// game_map[i][j] == '?', and it will be clicked
// later. If map_status[i][j] == 2, then
// game_map[i][j] == '0'-'8', and it has been clicked
// And when a block's status is updated from 0 to 1,
// it will be pushed into no_mine_block_to_be_clicked
/**
* @brief The definition of function ProcessSimpleCase()
*
* @details This function is designed to process the simplest case
*/
void ProcessSimpleCase() {
for (int i = 0; i < rows; i++)
for (int j = 0; j < columns; j++)
if (map_status[i][j] == 2) {
int nearby_mines = game_map[i][j] - '0',
nearby_unkown =
0; // nearby_mines is the number of mines in currently unknown
// blocks that are adjacent to the block (i,j)
const int dx[8] = {-1, -1, -1, 0, 0, 1, 1, 1},
dy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
for (int k = 0; k < 8; k++) {
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < rows && y >= 0 && y < columns) {
if (map_status[x][y] == 0)
nearby_unkown++;
else if (map_status[x][y] == -1)
nearby_mines--;
}
}
if (nearby_unkown != 0) {
if (nearby_mines == 0) {
for (int k = 0; k < 8; k++) {
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < rows && y >= 0 && y < columns &&
map_status[x][y] == 0) {
map_status[x][y] = 1;
no_mine_block_to_be_clicked.push(std::make_pair(x, y));
}
}
} else if (nearby_mines == nearby_unkown) {
for (int k = 0; k < 8; k++) {
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < rows && y >= 0 && y < columns &&
map_status[x][y] == 0)
map_status[x][y] = -1;
}
}
}
}
}
std::map<std::pair<int, int>, int>
position_to_variaID; // convert the (row,column) to variable ID in the
// equations,0 based
std::vector<std::pair<int, int> > variaID_to_position;
/**
* @brief The definition of function PrintEquations()
*
* @details This function is designed to print the equations for debugging
*/
void PrintEquations(std::vector<std::vector<double> > equations) {
// return;
std::cout << "equations:" << std::endl;
for (int i = 0; i < equations.size(); i++) {
for (int j = 0; j < equations[i].size(); j++)
std::cout << equations[i][j] << " ";
std::cout << std::endl;
}
// use variaID_to_position to print the position of each variable
std::cout << "variaID_to_position:" << std::endl;
for (int i = 0; i < variaID_to_position.size(); i++)
std::cout << "(" << variaID_to_position[i].first << ","
<< variaID_to_position[i].second << ")"
<< " ";
std::cout << std::endl;
// print map_status
std::cout << "map_status:" << std::endl;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) std::cout << map_status[i][j] << " ";
std::cout << std::endl;
}
}
/**
* @brief The definition of function GenerateEquations()
*
* @details This function is designed to scan the game_map and map_status to
* generate the equations that will be used in Gaussian-Jordan Elimination.
* It returns a vector<vector<double>> equations, where equations[i] is the i th
* equation.
*/
std::vector<std::vector<double> > GenerateEquations() {
variaID_to_position.clear();
position_to_variaID.clear();
int number_of_equations = 0;
std::set<std::pair<int, int> > can_form_equations;
for (int i = 0; i < rows; i++)
for (int j = 0; j < columns; j++)
if (map_status[i][j] == 2) {
const int dx[8] = {-1, -1, -1, 0, 0, 1, 1, 1},
dy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
bool there_is_unknown_nearby = false;
for (int k = 0; k < 8; k++) {
int nr = i + dx[k], nc = j + dy[k];
if (nr < 0 || nr >= rows || nc < 0 || nc >= columns) continue;
if (map_status[nr][nc] != 0) continue;
there_is_unknown_nearby = true;
std::pair<int, int> pos = std::make_pair(nr, nc);
if (position_to_variaID.find(pos) == position_to_variaID.end()) {
int cnt = variaID_to_position.size();
variaID_to_position.push_back(pos);
position_to_variaID[pos] = cnt;
}
}
number_of_equations += there_is_unknown_nearby;
if (there_is_unknown_nearby)
can_form_equations.insert(std::make_pair(i, j));
}
std::vector<std::vector<double> > equations;
std::vector<double> equa_template;
equa_template.resize(position_to_variaID.size() + 1);
for (int i = 0; i < equa_template.size(); i++) equa_template[i] = 0;
for (int i = 0; i < rows; i++)
for (int j = 0; j < columns; j++)
if (can_form_equations.count(std::make_pair(i, j)) == 1) {
assert('0' <= game_map[i][j] && game_map[i][j] <= '8');
equations.push_back(equa_template);
int nearby_mines = game_map[i][j] - '0';
const int dx[8] = {-1, -1, -1, 0, 0, 1, 1, 1},
dy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
for (int k = 0; k < 8; k++) {
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < rows && y >= 0 && y < columns) {
if (map_status[x][y] == -1) nearby_mines--;
}
}
equations[equations.size() - 1][position_to_variaID.size()] =
nearby_mines;
for (int k = 0; k < 8; k++) {
int nr = i + dx[k], nc = j + dy[k];
if (nr < 0 || nr >= rows || nc < 0 || nc >= columns) continue;
if (map_status[nr][nc] != 0) continue;
equations[equations.size() - 1]
[position_to_variaID[std::make_pair(nr, nc)]] = 1;
}
}
// PrintEquations(equations);
return equations;
}
/**
* @brief The definition of function GaussianJordanElimination()
* @details This function is designed to use Gaussian-Jordan Elimination to
* solve the equations. It returns the processed vector<vector<double>>
* &equations
* @param vector<vector<double>> equations The equations to be solved
*/
const double eps = 1e-6;
const int error_status_of_nearint = -0x3f3f3f3f;
inline int nearint(double v) {
int raw = v + 0.5;
if (abs(v - raw) < eps)
return raw;
else
return error_status_of_nearint;
}
std::vector<std::vector<double> > GaussianJordanElimination(
std::vector<std::vector<double> > equations) {
using std::abs;
int n = equations.size();
if (n == 0) return equations;
int m = equations[0].size();
// assert(n + 1 == m);
for (int i = 0; i < n; i++) {
int pivot = i;
for (int j = i + 1; j < n; j++)
if (abs(equations[j][i]) > abs(equations[pivot][i])) pivot = j;
std::swap(equations[i], equations[pivot]);
if (abs(equations[i][i]) < eps) continue;
const double pivot_value = equations[i][i];
for (int j = 0; j < m; j++) equations[i][j] /= pivot_value;
for (int j = 0; j < n; j++)
if (j != i) {
const double tmp = equations[j][i];
for (int k = 0; k < m; k++) equations[j][k] -= tmp * equations[i][k];
}
}
return equations;
}
/**
* @brief The definition of function InterpretResult()
*
* @details This function is designed to interpret the result of Gaussian-Jordan
* Elimination
* @param std::vector<std::vector<double> > &equations The solved status of the
* equations
*/
void InterpretResult(std::vector<std::vector<double> > equations) {
// std::cout << "InterpretResult" << std::endl;
// PrintEquations(equations);
int n = equations.size();
if (n == 0) return;
int m = equations[0].size();
if (m == 1) return;
for (int i = 0; i < n; i++) {
// std::cout << "equations[" << i << "]:" << std::endl;
int number_of_1 = 0, number_of_non1 = 0, vid = -1;
for (int j = 0; j < m - 1; j++)
if (nearbyint(equations[i][j]) == 1) {
number_of_1++;
vid = j;
} else if (nearbyint(equations[i][j]) != 0)
number_of_non1++;
if (number_of_non1) continue;
if (number_of_1 != 1) continue;
int sol = nearbyint(equations[i][m - 1]);
if (sol == error_status_of_nearint) continue;
assert(sol == 0 || sol == 1);
assert(vid >= 0);
assert(vid < variaID_to_position.size());
std::pair<int, int> pos = variaID_to_position[vid];
if (map_status[pos.first][pos.second] != 0) continue;
if (sol == 0) {
map_status[pos.first][pos.second] = 1;
no_mine_block_to_be_clicked.push(pos);
// std::cout << "push (" << pos.first << "," << pos.second << ")"
// << std::endl;
}
if (sol == 1) {
map_status[pos.first][pos.second] = -1;
// std::cout << "set (" << pos.first << "," << pos.second << ")"
// << std::endl;
}
}
}
/**
* @brief The definition of function PreProcessData()
*
* @details This function is designed to preprocess the data of the game map
* immedietly after reading it.
* It will check unknown blocks and use Gaussian Elimination to find if there
* is any block that definitely has no mine or has mine. If there is a block
* definitely has no mine, it will push the block into
* no_mine_block_to_be_clicked.
* Note that if some block is found to be definitely has no mine or has mine,
* it will be marked as known even if it is not clicked.
*/
void PreProcessData() {
using namespace Client;
// scan the game_map and mark clicked block in map_status
for (int i = 0; i < rows; i++)
for (int j = 0; j < columns; j++)
if (game_map[i][j] != '?') {
assert(game_map[i][j] >= '0' && game_map[i][j] <= '8');
map_status[i][j] = 2;
}
// scan the map and process the simplest case
ProcessSimpleCase();
// 1.find all unkown blocks that are adjacnent to clicked blocks and prepare
// for Gaussian-Jordan Elimination.
// 2. start Gaussian-Jordan Elimination
// 3. interpret the result of Gaussian-Jordan Elimination,store the result in
// map_status and push the newly found block that definitely has no mine
// into no_mine_block_to_be_clicked
std::vector<std::vector<double> > equations = GenerateEquations();
equations = GaussianJordanElimination(equations);
InterpretResult(equations);
}
/**
* @brief The definition of function TotalRandomGuess()
*
* @details This function is designed to make a total random guess when there
* is no definite none-mine block to be clicked. Note that this function is
* just used temporarily before a better algorithm is designed.
*/
std::pair<int, int> TotalRandomGuess() {
using namespace Client;
// std::cout << "TotalRandomGuess" << std::endl;
std::uniform_int_distribution<int> row_dis(0, rows - 1),
column_dis(0, columns - 1);
int row = row_dis(RawRnd), column = column_dis(RawRnd);
while (map_status[row][column] != 0) {
row = row_dis(RawRnd);
column = column_dis(RawRnd);
}
return std::make_pair(row, column);
}
/**
* @brief The definition of function MakeBestGuess()
*
* @details This function is designed to make the best guess when there is no
* definite none-mine block to be clicked.
*/
std::pair<int, int> MakeBestGuess() {
using namespace Client;
// just make a total random guess before a better algorithm is designed
return TotalRandomGuess();
return std::make_pair(0, 0);
}
/**
* @brief The definition of function GenerateNextStep()
*
* @details This function is designed to generate the next step when playing
* the client's (or player's) role.
*/
std::pair<int, int> GenerateNextStep() {
using namespace Client;
if (!no_mine_block_to_be_clicked.empty()) {
std::pair<int, int> next_step = no_mine_block_to_be_clicked.front();
no_mine_block_to_be_clicked.pop();
return next_step;
} else
return MakeBestGuess();
}
} // namespace Client
void ReadMap() {
using namespace Client;
for (int i = 0; i < rows; i++) {
std::cin >> game_map[i];
assert(strlen(game_map[i]) == columns);
}
PreProcessData();
}
/**
* @brief The definition of function Decide()
*
* @details This function is designed to decide the next step when playing the
* client's (or player's) role. Open up your mind and make your decision here!
*/
void Decide() {
using namespace Client;
while (true) {
std::pair<int, int> next_step = GenerateNextStep();
Execute(next_step.first, next_step.second);
}
}
#endif