finish carry proof
This commit is contained in:
@ -21,6 +21,12 @@ Local Open Scope sac.
|
||||
|
||||
Module Aux.
|
||||
|
||||
Lemma Z_mod_add_carry: forall (a b m: Z),
|
||||
m > 0 -> 0 <= a < m -> 0 <= b < m ->
|
||||
(a + b) mod m < b ->
|
||||
a + b = (a + b) mod m + m.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma Z_of_nat_succ: forall (n: nat),
|
||||
Z.of_nat (S n) = Z.of_nat n + 1.
|
||||
Proof. lia. Qed.
|
||||
|
@ -1787,6 +1787,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) >= b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -1810,10 +1812,10 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& (store_uint_array rp_pre (i + 1 ) (replace_Znth (i) ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32))) ((app (l') ((cons (a) (nil)))))) )
|
||||
** ((( &( "i" ) )) # Int |-> i)
|
||||
** (store_uint_array_rec rp_pre (i + 1 ) cap2 l''' )
|
||||
** ((( &( "b" ) )) # UInt |-> 0)
|
||||
** (store_uint_array ap_pre n_pre l_2 )
|
||||
** ((( &( "r" ) )) # UInt |-> (unsigned_last_nbits (((Znth i l_2 0) + b )) (32)))
|
||||
** (store_undef_uint_array_rec ap_pre n_pre cap1 )
|
||||
** ((( &( "b" ) )) # UInt |-> 0)
|
||||
** ((( &( "n" ) )) # Int |-> n_pre)
|
||||
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|
||||
** ((( &( "rp" ) )) # Ptr |-> rp_pre)
|
||||
@ -1829,6 +1831,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) < b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -1852,10 +1856,10 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& (store_uint_array rp_pre (i + 1 ) (replace_Znth (i) ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32))) ((app (l') ((cons (a) (nil)))))) )
|
||||
** ((( &( "i" ) )) # Int |-> i)
|
||||
** (store_uint_array_rec rp_pre (i + 1 ) cap2 l''' )
|
||||
** ((( &( "b" ) )) # UInt |-> 1)
|
||||
** (store_uint_array ap_pre n_pre l_2 )
|
||||
** ((( &( "r" ) )) # UInt |-> (unsigned_last_nbits (((Znth i l_2 0) + b )) (32)))
|
||||
** (store_undef_uint_array_rec ap_pre n_pre cap1 )
|
||||
** ((( &( "b" ) )) # UInt |-> 1)
|
||||
** ((( &( "n" ) )) # Int |-> n_pre)
|
||||
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|
||||
** ((( &( "rp" ) )) # Ptr |-> rp_pre)
|
||||
@ -1908,13 +1912,82 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
** (store_uint_array_rec rp_pre 0 cap2 l'' )
|
||||
.
|
||||
|
||||
Definition mpn_add_1_entail_wit_2_1 :=
|
||||
Definition mpn_add_1_entail_wit_2 :=
|
||||
forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) (b: Z) (l'': (@list Z)) (l': (@list Z)) (val2: Z) (val1: Z) (l_2: (@list Z)) (i: Z) ,
|
||||
[| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
&& [| (list_store_Z_compact l_2 val ) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| (list_store_Z (sublist (0) (i) (l_2)) val1 ) |]
|
||||
&& [| (list_store_Z l' val2 ) |]
|
||||
&& [| ((val2 + (b * (Z.pow (UINT_MOD) (i)) ) ) = (val1 + b_pre )) |]
|
||||
&& [| ((Zlength (l')) = i) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z_compact l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (cap2 <= 100000000) |]
|
||||
&& [| (n_pre > 0) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& (store_uint_array ap_pre n_pre l_2 )
|
||||
** ((( &( "r" ) )) # UInt |-> (unsigned_last_nbits (((Znth i l_2 0) + b )) (32)))
|
||||
** ((( &( "i" ) )) # Int |-> i)
|
||||
** (store_undef_uint_array_rec ap_pre n_pre cap1 )
|
||||
** (store_uint_array rp_pre i l' )
|
||||
** (store_uint_array_rec rp_pre i cap2 l'' )
|
||||
** ((( &( "b" ) )) # UInt |-> b)
|
||||
** ((( &( "n" ) )) # Int |-> n_pre)
|
||||
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|
||||
** ((( &( "rp" ) )) # Ptr |-> rp_pre)
|
||||
|--
|
||||
[| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
&& [| (list_store_Z_compact l_2 val ) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| (list_store_Z (sublist (0) (i) (l_2)) val1 ) |]
|
||||
&& [| (list_store_Z l' val2 ) |]
|
||||
&& [| ((val2 + (b * (Z.pow (UINT_MOD) (i)) ) ) = (val1 + b_pre )) |]
|
||||
&& [| ((Zlength (l')) = i) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z_compact l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (cap2 <= 100000000) |]
|
||||
&& [| (n_pre > 0) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& ((( &( "b" ) )) # UInt |-> b)
|
||||
** (store_uint_array ap_pre n_pre l_2 )
|
||||
** ((( &( "r" ) )) # UInt |-> (unsigned_last_nbits (((Znth i l_2 0) + b )) (32)))
|
||||
** ((( &( "i" ) )) # Int |-> i)
|
||||
** (store_undef_uint_array_rec ap_pre n_pre cap1 )
|
||||
** (store_uint_array rp_pre i l' )
|
||||
** (store_uint_array_rec rp_pre i cap2 l'' )
|
||||
** ((( &( "n" ) )) # Int |-> n_pre)
|
||||
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|
||||
** ((( &( "rp" ) )) # Ptr |-> rp_pre)
|
||||
.
|
||||
|
||||
Definition mpn_add_1_entail_wit_3_1 :=
|
||||
forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l_2: (@list Z)) (b: Z) (l''_2: (@list Z)) (l'_2: (@list Z)) (val2_2: Z) (val1_2: Z) (l_3: (@list Z)) (i: Z) (a: Z) (l''': (@list Z)) ,
|
||||
[| (l''_2 = (cons (a) (l'''))) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_3 0) + b )) (32)) < b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -1966,13 +2039,15 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
** (store_uint_array_rec rp_pre (i + 1 ) cap2 l'' )
|
||||
.
|
||||
|
||||
Definition mpn_add_1_entail_wit_2_2 :=
|
||||
Definition mpn_add_1_entail_wit_3_2 :=
|
||||
forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l_2: (@list Z)) (b: Z) (l''_2: (@list Z)) (l'_2: (@list Z)) (val2_2: Z) (val1_2: Z) (l_3: (@list Z)) (i: Z) (a: Z) (l''': (@list Z)) ,
|
||||
[| (l''_2 = (cons (a) (l'''))) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_3 0) + b )) (32)) >= b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2193,6 +2268,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
Definition mpn_add_1_partial_solve_wit_4_pure :=
|
||||
forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) (b: Z) (l'': (@list Z)) (l': (@list Z)) (val2: Z) (val1: Z) (l_2: (@list Z)) (i: Z) ,
|
||||
[| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) >= b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2213,13 +2290,13 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (cap2 <= 100000000) |]
|
||||
&& [| (n_pre > 0) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& (store_uint_array ap_pre n_pre l_2 )
|
||||
&& ((( &( "b" ) )) # UInt |-> 0)
|
||||
** (store_uint_array ap_pre n_pre l_2 )
|
||||
** ((( &( "r" ) )) # UInt |-> (unsigned_last_nbits (((Znth i l_2 0) + b )) (32)))
|
||||
** ((( &( "i" ) )) # Int |-> i)
|
||||
** (store_undef_uint_array_rec ap_pre n_pre cap1 )
|
||||
** (store_uint_array rp_pre i l' )
|
||||
** (store_uint_array_rec rp_pre i cap2 l'' )
|
||||
** ((( &( "b" ) )) # UInt |-> 0)
|
||||
** ((( &( "n" ) )) # Int |-> n_pre)
|
||||
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|
||||
** ((( &( "rp" ) )) # Ptr |-> rp_pre)
|
||||
@ -2232,6 +2309,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
Definition mpn_add_1_partial_solve_wit_4_aux :=
|
||||
forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) (b: Z) (l'': (@list Z)) (l': (@list Z)) (val2: Z) (val1: Z) (l_2: (@list Z)) (i: Z) ,
|
||||
[| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) >= b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2261,6 +2340,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) >= b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2292,6 +2373,8 @@ Definition mpn_add_1_partial_solve_wit_4 := mpn_add_1_partial_solve_wit_4_pure -
|
||||
Definition mpn_add_1_partial_solve_wit_5_pure :=
|
||||
forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) (b: Z) (l'': (@list Z)) (l': (@list Z)) (val2: Z) (val1: Z) (l_2: (@list Z)) (i: Z) ,
|
||||
[| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) < b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2312,13 +2395,13 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (cap2 <= 100000000) |]
|
||||
&& [| (n_pre > 0) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& (store_uint_array ap_pre n_pre l_2 )
|
||||
&& ((( &( "b" ) )) # UInt |-> 1)
|
||||
** (store_uint_array ap_pre n_pre l_2 )
|
||||
** ((( &( "r" ) )) # UInt |-> (unsigned_last_nbits (((Znth i l_2 0) + b )) (32)))
|
||||
** ((( &( "i" ) )) # Int |-> i)
|
||||
** (store_undef_uint_array_rec ap_pre n_pre cap1 )
|
||||
** (store_uint_array rp_pre i l' )
|
||||
** (store_uint_array_rec rp_pre i cap2 l'' )
|
||||
** ((( &( "b" ) )) # UInt |-> 1)
|
||||
** ((( &( "n" ) )) # Int |-> n_pre)
|
||||
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|
||||
** ((( &( "rp" ) )) # Ptr |-> rp_pre)
|
||||
@ -2331,6 +2414,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
Definition mpn_add_1_partial_solve_wit_5_aux :=
|
||||
forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) (b: Z) (l'': (@list Z)) (l': (@list Z)) (val2: Z) (val1: Z) (l_2: (@list Z)) (i: Z) ,
|
||||
[| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) < b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2360,6 +2445,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) < b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2395,6 +2482,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) < b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2425,6 +2514,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) < b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2459,6 +2550,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) >= b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2489,6 +2582,8 @@ forall (b_pre: Z) (n_pre: Z) (ap_pre: Z) (rp_pre: Z) (cap2: Z) (cap1: Z) (l2: (@
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (n_pre <= cap2) |]
|
||||
&& [| ((unsigned_last_nbits (((Znth i l_2 0) + b )) (32)) >= b) |]
|
||||
&& [| (0 <= b) |]
|
||||
&& [| (b <= UINT_MAX) |]
|
||||
&& [| (i < n_pre) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n_pre) |]
|
||||
@ -2630,8 +2725,9 @@ Axiom proof_of_mpn_add_1_safety_wit_1 : mpn_add_1_safety_wit_1.
|
||||
Axiom proof_of_mpn_add_1_safety_wit_2 : mpn_add_1_safety_wit_2.
|
||||
Axiom proof_of_mpn_add_1_safety_wit_3 : mpn_add_1_safety_wit_3.
|
||||
Axiom proof_of_mpn_add_1_entail_wit_1 : mpn_add_1_entail_wit_1.
|
||||
Axiom proof_of_mpn_add_1_entail_wit_2_1 : mpn_add_1_entail_wit_2_1.
|
||||
Axiom proof_of_mpn_add_1_entail_wit_2_2 : mpn_add_1_entail_wit_2_2.
|
||||
Axiom proof_of_mpn_add_1_entail_wit_2 : mpn_add_1_entail_wit_2.
|
||||
Axiom proof_of_mpn_add_1_entail_wit_3_1 : mpn_add_1_entail_wit_3_1.
|
||||
Axiom proof_of_mpn_add_1_entail_wit_3_2 : mpn_add_1_entail_wit_3_2.
|
||||
Axiom proof_of_mpn_add_1_return_wit_1 : mpn_add_1_return_wit_1.
|
||||
Axiom proof_of_mpn_add_1_partial_solve_wit_1 : mpn_add_1_partial_solve_wit_1.
|
||||
Axiom proof_of_mpn_add_1_partial_solve_wit_2_pure : mpn_add_1_partial_solve_wit_2_pure.
|
||||
|
@ -422,14 +422,20 @@ Proof.
|
||||
+ simpl. tauto.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_1_entail_wit_2_1 : mpn_add_1_entail_wit_2_1.
|
||||
Lemma proof_of_mpn_add_1_entail_wit_2 : mpn_add_1_entail_wit_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
entailer!.
|
||||
Admitted.
|
||||
|
||||
Lemma proof_of_mpn_add_1_entail_wit_3_1 : mpn_add_1_entail_wit_3_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
rewrite replace_Znth_app_r.
|
||||
- Exists l'''.
|
||||
rewrite H12.
|
||||
rewrite H14.
|
||||
assert (i - i = 0) by lia.
|
||||
rewrite H24.
|
||||
rewrite H26.
|
||||
set (new_b := (unsigned_last_nbits (Znth i l_3 0 + b) 32)).
|
||||
rewrite replace_Znth_nothing; try lia.
|
||||
assert (replace_Znth 0 new_b (a :: nil) = new_b :: nil). {
|
||||
@ -438,85 +444,108 @@ Proof.
|
||||
unfold replace_nth.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite H25.
|
||||
rewrite H27.
|
||||
Exists (l'_2 ++ new_b :: nil).
|
||||
Exists (val2_2 + new_b * (UINT_MOD^ i)).
|
||||
Exists (val1_2 + (Znth i l_3 0) * (UINT_MOD^ i)).
|
||||
Exists l_3.
|
||||
entailer!.
|
||||
+ rewrite Zlength_app.
|
||||
rewrite H12.
|
||||
rewrite H14.
|
||||
unfold Zlength.
|
||||
unfold Zlength_aux.
|
||||
lia.
|
||||
+ assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i + b_pre = (val1_2 + b_pre) + Znth i l_3 0 * 4294967296 ^ i) by lia.
|
||||
rewrite H26.
|
||||
rewrite <- H11.
|
||||
rewrite H28.
|
||||
rewrite <- H13.
|
||||
assert (Znth i l_3 0 + b = new_b + UINT_MOD).
|
||||
{
|
||||
subst new_b.
|
||||
unfold unsigned_last_nbits.
|
||||
unfold unsigned_last_nbits in H3.
|
||||
assert (2^32 = 4294967296). { nia. }
|
||||
rewrite H27 in *.
|
||||
admit.
|
||||
rewrite H29 in *.
|
||||
assert (0 <= Znth i l_3 0 < 4294967296). {
|
||||
assert (l_2=l_3).
|
||||
{
|
||||
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
|
||||
apply H30 in H9; try tauto.
|
||||
}
|
||||
assert (i < Zlength l_3). {
|
||||
subst l_3.
|
||||
rewrite H17.
|
||||
tauto.
|
||||
}
|
||||
unfold list_store_Z_compact in H9.
|
||||
apply list_within_bound_Znth.
|
||||
lia.
|
||||
tauto.
|
||||
}
|
||||
apply Z_mod_add_carry; try lia; try tauto.
|
||||
}
|
||||
admit.
|
||||
assert (b * 4294967296 ^ i + Znth i l_3 0 * 4294967296 ^ i = new_b * 4294967296 ^ i + 1 * 4294967296 ^ (i + 1)).
|
||||
{
|
||||
subst new_b.
|
||||
Search [ Zmult Zplus "distr" ].
|
||||
rewrite <- Z.mul_add_distr_r.
|
||||
rewrite (Zpow_add_1 4294967296 i); try lia.
|
||||
}
|
||||
lia.
|
||||
+ pose proof (__list_store_Z_concat_r l'_2 val2_2 new_b).
|
||||
apply H26 in H10.
|
||||
rewrite H12 in H10.
|
||||
apply H28 in H12.
|
||||
rewrite H14 in H12.
|
||||
assert (new_b * 4294967296 ^ i + val2_2 = (val2_2 + new_b * 4294967296 ^ i)) by lia.
|
||||
rewrite H27 in H10.
|
||||
rewrite H29 in H12.
|
||||
tauto.
|
||||
subst new_b.
|
||||
unfold unsigned_last_nbits.
|
||||
assert (2 ^ 32 = 4294967296). { nia. }
|
||||
rewrite H27.
|
||||
rewrite H29.
|
||||
apply Z.mod_pos_bound.
|
||||
lia.
|
||||
+ assert (l_2=l_3).
|
||||
{
|
||||
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
|
||||
apply H26 in H7; try tauto.
|
||||
apply H28 in H9; try tauto.
|
||||
}
|
||||
|
||||
assert (i < Zlength l_3). {
|
||||
subst l_3.
|
||||
rewrite H15.
|
||||
rewrite H17.
|
||||
tauto.
|
||||
}
|
||||
|
||||
assert((sublist 0 (i + 1) l_3) = (sublist 0 i l_3) ++ (Znth i l_3 0) :: nil). {
|
||||
pose proof (sublist_split 0 (i+1) i l_3).
|
||||
pose proof (sublist_single i l_3 0).
|
||||
rewrite <-H29.
|
||||
apply H28.
|
||||
rewrite <-H31.
|
||||
apply H30.
|
||||
lia.
|
||||
subst l_3.
|
||||
rewrite Zlength_correct in H27.
|
||||
rewrite Zlength_correct in H29.
|
||||
lia.
|
||||
rewrite Zlength_correct in H27.
|
||||
rewrite Zlength_correct in H29.
|
||||
lia.
|
||||
}
|
||||
rewrite H28.
|
||||
pose proof (__list_store_Z_concat_r (sublist 0 i l_3) val1_2 (Znth i l_3 0)).
|
||||
apply H29 in H9.
|
||||
rewrite Zlength_sublist0 in H9.
|
||||
assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i = Znth i l_3 0 * 4294967296 ^ i + val1_2) by lia.
|
||||
rewrite H30.
|
||||
pose proof (__list_store_Z_concat_r (sublist 0 i l_3) val1_2 (Znth i l_3 0)).
|
||||
apply H31 in H11.
|
||||
rewrite Zlength_sublist0 in H11.
|
||||
assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i = Znth i l_3 0 * 4294967296 ^ i + val1_2) by lia.
|
||||
rewrite H32.
|
||||
tauto.
|
||||
subst l_3.
|
||||
rewrite H15.
|
||||
rewrite H17.
|
||||
lia.
|
||||
apply list_within_bound_Znth.
|
||||
lia.
|
||||
unfold list_store_Z_compact in H7.
|
||||
unfold list_store_Z_compact in H9.
|
||||
tauto.
|
||||
- pose proof (Zlength_sublist0 i l'_2).
|
||||
lia.
|
||||
Admitted.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_1_entail_wit_2_2 : mpn_add_1_entail_wit_2_2.
|
||||
Lemma proof_of_mpn_add_1_entail_wit_3_2 : mpn_add_1_entail_wit_3_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
Admitted.
|
||||
|
Reference in New Issue
Block a user