finish proof_of_mpn_add_n_entail_wit_3_1
This commit is contained in:
@ -33,6 +33,34 @@ Lemma Z_mod_add_uncarry: forall (a b m: Z),
|
||||
a + b = (a + b) mod m.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma Z_mod_3add_carry10: forall (a b c m: Z),
|
||||
m > 0 -> 0 <= a < m -> 0 <= b < m -> 0 <= c < m ->
|
||||
(a + c) mod m < c ->
|
||||
((a + c) mod m + b) mod m >= b ->
|
||||
a + b + c = ((a + c) mod m + b) mod m + m.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma Z_mod_3add_carry01: forall (a b c m: Z),
|
||||
m > 0 -> 0 <= a < m -> 0 <= b < m -> 0 <= c < m ->
|
||||
(a + c) mod m >= c ->
|
||||
((a + c) mod m + b) mod m < b ->
|
||||
a + b + c = ((a + c) mod m + b) mod m + m.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma Z_mod_3add_carry11: forall (a b c m: Z),
|
||||
m > 0 -> 0 <= a < m -> 0 <= b < m -> 0 <= c < m ->
|
||||
(a + c) mod m < c ->
|
||||
((a + c) mod m + b) mod m < b ->
|
||||
a + b + c = ((a + c) mod m + b) mod m + m.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma Z_mod_3add_carry00: forall (a b c m: Z),
|
||||
m > 0 -> 0 <= a < m -> 0 <= b < m -> 0 <= c < m ->
|
||||
(a + c) mod m >= c ->
|
||||
((a + c) mod m + b) mod m >= b ->
|
||||
a + b + c = ((a + c) mod m + b) mod m.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma Z_of_nat_succ: forall (n: nat),
|
||||
Z.of_nat (S n) = Z.of_nat n + 1.
|
||||
Proof. lia. Qed.
|
||||
|
Reference in New Issue
Block a user