Add annotations to gmp.c

This commit is contained in:
xiaoh105
2025-06-07 15:23:11 +08:00
parent e7bc194ec7
commit 1873d949ce
8 changed files with 448 additions and 175 deletions

104
projects/lib/GmpAux.v Executable file
View File

@ -0,0 +1,104 @@
Require Import Coq.ZArith.ZArith.
Require Import Coq.Bool.Bool.
Require Import Coq.Lists.List.
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Classes.Morphisms.
Require Import Coq.micromega.Psatz.
Require Import Permutation.
Require Import String.
From AUXLib Require Import int_auto Axioms Feq Idents List_lemma VMap.
Require Import SetsClass.SetsClass. Import SetsNotation.
From SimpleC.SL Require Import CommonAssertion Mem SeparationLogic IntLib.
Require Import Logic.LogicGenerator.demo932.Interface.
Local Open Scope Z_scope.
Local Open Scope sets.
Import ListNotations.
Local Open Scope list.
Require Import String.
Local Open Scope string.
Import naive_C_Rules.
Local Open Scope sac.
Module Aux.
Lemma Z_of_nat_succ: forall (n: nat),
Z.of_nat (S n) = Z.of_nat n + 1.
Proof. lia. Qed.
Lemma Zpow_add_1: forall (a b: Z),
a >= 0 -> b >= 0 ->
a ^ (b + 1) = a ^ b * a.
Proof.
intros.
rewrite (Z.pow_add_r a b 1); lia.
Qed.
Lemma Zmul_mod_cancel: forall (n a b: Z),
n >= 0 -> a > 0 -> b >= 0 ->
(n * a) mod (a ^ (b + 1)) = a * (n mod (a ^ b)).
Proof.
intros.
pose proof (Z_div_mod_eq_full n (a ^ b)).
pose proof (Z.mod_bound_pos n (a ^ b) ltac:(lia) ltac:(nia)).
remember (n / a ^ b) as q eqn:Hq.
remember (n mod a ^ b) as rem eqn:Hrem.
rewrite H2.
rewrite Z.mul_add_distr_r.
rewrite (Z.mul_comm (a ^ b) q); rewrite <-Z.mul_assoc.
rewrite <-Zpow_add_1; try lia.
assert (0 <= rem * a < a ^ (b + 1)). {
rewrite Zpow_add_1; try lia.
nia.
}
rewrite <-(Zmod_unique_full (q * a ^ (b + 1) + rem * a) (a ^ (b + 1)) q (rem * a)).
+ lia.
+ unfold Remainder.
lia.
+ lia.
Qed.
Lemma Zdiv_mod_pow: forall (n a b: Z),
a > 0 -> b >= 0 -> n >= 0 ->
(n / a) mod (a ^ b) = (n mod (a ^ (b + 1))) / a.
Proof.
intros.
pose proof (Z_div_mod_eq_full n (a ^ (b + 1))).
remember (n / (a ^ (b + 1))) as q eqn:Hq.
remember (n mod a ^ (b + 1)) as rem eqn:Hrem.
assert (n / a = a ^ b * q + rem / a). {
rewrite H2.
rewrite Zpow_add_1; try lia.
pose proof (Z_div_plus_full_l (a ^ b * q) a rem ltac:(lia)).
assert (a ^ b * q * a + rem = a ^ b * a * q + rem). { lia. }
rewrite H4 in H3.
tauto.
}
apply Znumtheory.Zdivide_mod_minus.
+ pose proof (Z.mod_bound_pos n (a ^ (b + 1)) ltac:(lia) (Z.pow_pos_nonneg a (b + 1) ltac:(lia) ltac:(lia))).
rewrite <-Hrem in H4.
rewrite Zpow_add_1 in H4; try lia.
pose proof (Z.div_lt_upper_bound rem a (a ^ b) ltac:(lia) ltac:(lia)).
split; try lia.
apply (Z_div_pos rem a ltac:(lia) ltac:(lia)).
+ unfold Z.divide.
exists q.
lia.
Qed.
Lemma list_app_cons: forall (l1 l2: list Z) (a: Z),
app l1 (a :: l2) = app (app l1 (a :: nil)) l2.
Proof.
intros.
revert a l2.
induction l1.
+ intros.
rewrite app_nil_l.
reflexivity.
+ intros.
simpl in *.
specialize (IHl1 a0 l2).
rewrite IHl1.
reflexivity.
Qed.
End Aux.