Merge remote-tracking branch 'origin/main' into mpz_realloc

This commit is contained in:
xiaoh105
2025-06-21 22:08:51 +08:00
8 changed files with 1470 additions and 18 deletions

View File

@ -11,7 +11,7 @@ Require Import SetsClass.SetsClass. Import SetsNotation.
From SimpleC.SL Require Import Mem SeparationLogic.
From GmpLib Require Import gmp_goal.
Require Import GmpLib.GmpNumber. Import Internal.
Require Import GmpLib.GmpAux.
Require Import GmpLib.GmpAux. Import Aux.
Require Import Logic.LogicGenerator.demo932.Interface.
Local Open Scope Z_scope.
Local Open Scope sets.
@ -30,17 +30,11 @@ Proof. pre_process. Qed.
Lemma proof_of_gmp_max_return_wit_1_1 : gmp_max_return_wit_1_1.
Proof.
pre_process.
entailer!.
unfold Zmax.
rewrite Z.max_r; lia.
Qed.
Lemma proof_of_gmp_max_return_wit_1_2 : gmp_max_return_wit_1_2.
Proof.
pre_process.
entailer!.
unfold Zmax.
rewrite Z.max_l; lia.
Qed.
Lemma proof_of_gmp_cmp_return_wit_1_2 : gmp_cmp_return_wit_1_2.
@ -412,6 +406,408 @@ Proof.
tauto.
Qed.
Lemma proof_of_mpn_add_1_entail_wit_1 : mpn_add_1_entail_wit_1.
Proof.
pre_process.
Exists l2 nil 0 0 l_2.
entailer!.
- unfold list_store_Z.
split.
+ simpl. tauto.
+ simpl. tauto.
- rewrite (sublist_nil l_2 0 0); try lia.
unfold list_store_Z.
split.
+ simpl. tauto.
+ simpl. tauto.
Qed.
Lemma proof_of_mpn_add_1_entail_wit_2 : mpn_add_1_entail_wit_2.
Proof.
pre_process.
prop_apply (store_uint_range &("b") b).
entailer!.
Qed.
Lemma proof_of_mpn_add_1_entail_wit_3_1 : mpn_add_1_entail_wit_3_1.
Proof.
pre_process.
rewrite replace_Znth_app_r.
- Exists l'''.
rewrite H14.
assert (i - i = 0) by lia.
rewrite H26.
set (new_b := (unsigned_last_nbits (Znth i l_3 0 + b) 32)).
rewrite replace_Znth_nothing; try lia.
assert (replace_Znth 0 new_b (a :: nil) = new_b :: nil). {
unfold replace_Znth.
unfold Z.to_nat.
unfold replace_nth.
reflexivity.
}
rewrite H27.
Exists (l'_2 ++ new_b :: nil).
Exists (val2_2 + new_b * (UINT_MOD^ i)).
Exists (val1_2 + (Znth i l_3 0) * (UINT_MOD^ i)).
Exists l_3.
entailer!.
+ rewrite Zlength_app.
rewrite H14.
unfold Zlength.
unfold Zlength_aux.
lia.
+ assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i + b_pre = (val1_2 + b_pre) + Znth i l_3 0 * 4294967296 ^ i) by lia.
rewrite H28.
rewrite <- H13.
assert (Znth i l_3 0 + b = new_b + UINT_MOD).
{
subst new_b.
unfold unsigned_last_nbits.
unfold unsigned_last_nbits in H3.
assert (2^32 = 4294967296). { nia. }
rewrite H29 in *.
assert (0 <= Znth i l_3 0 < 4294967296). {
assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
apply H30 in H9; try tauto.
}
assert (i < Zlength l_3). {
subst l_3.
rewrite H17.
tauto.
}
unfold list_store_Z_compact in H9.
apply list_within_bound_Znth.
lia.
tauto.
}
apply Z_mod_add_carry; try lia; try tauto.
}
assert (b * 4294967296 ^ i + Znth i l_3 0 * 4294967296 ^ i = new_b * 4294967296 ^ i + 1 * 4294967296 ^ (i + 1)).
{
subst new_b.
Search [ Zmult Zplus "distr" ].
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (__list_store_Z_concat_r l'_2 val2_2 new_b).
apply H28 in H12.
rewrite H14 in H12.
assert (new_b * 4294967296 ^ i + val2_2 = (val2_2 + new_b * 4294967296 ^ i)) by lia.
rewrite H29 in H12.
tauto.
subst new_b.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H29.
apply Z.mod_pos_bound.
lia.
+ assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
apply H28 in H9; try tauto.
}
assert (i < Zlength l_3). {
subst l_3.
rewrite H17.
tauto.
}
assert((sublist 0 (i + 1) l_3) = (sublist 0 i l_3) ++ (Znth i l_3 0) :: nil). {
pose proof (sublist_split 0 (i+1) i l_3).
pose proof (sublist_single i l_3 0).
rewrite <-H31.
apply H30.
lia.
subst l_3.
rewrite Zlength_correct in H29.
lia.
rewrite Zlength_correct in H29.
lia.
}
rewrite H30.
pose proof (__list_store_Z_concat_r (sublist 0 i l_3) val1_2 (Znth i l_3 0)).
apply H31 in H11.
rewrite Zlength_sublist0 in H11.
assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i = Znth i l_3 0 * 4294967296 ^ i + val1_2) by lia.
rewrite H32.
tauto.
subst l_3.
rewrite H17.
lia.
apply list_within_bound_Znth.
lia.
unfold list_store_Z_compact in H9.
tauto.
- pose proof (Zlength_sublist0 i l'_2).
lia.
Qed.
Lemma proof_of_mpn_add_1_entail_wit_3_2 : mpn_add_1_entail_wit_3_2.
Proof.
pre_process.
rewrite replace_Znth_app_r.
- Exists l'''.
rewrite H14.
assert (i - i = 0) by lia.
rewrite H26.
set (new_b := (unsigned_last_nbits (Znth i l_3 0 + b) 32)).
rewrite replace_Znth_nothing; try lia.
assert (replace_Znth 0 new_b (a :: nil) = new_b :: nil). {
unfold replace_Znth.
unfold Z.to_nat.
unfold replace_nth.
reflexivity.
}
rewrite H27.
Exists (l'_2 ++ new_b :: nil).
Exists (val2_2 + new_b * (UINT_MOD^ i)).
Exists (val1_2 + (Znth i l_3 0) * (UINT_MOD^ i)).
Exists l_3.
entailer!.
+ rewrite Zlength_app.
rewrite H14.
unfold Zlength.
unfold Zlength_aux.
lia.
+ assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i + b_pre = (val1_2 + b_pre) + Znth i l_3 0 * 4294967296 ^ i) by lia.
rewrite H28.
rewrite <- H13.
assert (Znth i l_3 0 + b = new_b).
{
subst new_b.
unfold unsigned_last_nbits.
unfold unsigned_last_nbits in H3.
assert (2^32 = 4294967296). { nia. }
rewrite H29 in *.
assert (0 <= Znth i l_3 0 < 4294967296). {
assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
apply H30 in H9; try tauto.
}
assert (i < Zlength l_3). {
subst l_3.
rewrite H17.
tauto.
}
unfold list_store_Z_compact in H9.
apply list_within_bound_Znth.
lia.
tauto.
}
apply Z_mod_add_uncarry; try lia; try tauto.
}
assert (b * 4294967296 ^ i + Znth i l_3 0 * 4294967296 ^ i = new_b * 4294967296 ^ i + 0 * 4294967296 ^ (i + 1)).
{
subst new_b.
Search [ Zmult Zplus "distr" ].
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (__list_store_Z_concat_r l'_2 val2_2 new_b).
apply H28 in H12.
rewrite H14 in H12.
assert (new_b * 4294967296 ^ i + val2_2 = (val2_2 + new_b * 4294967296 ^ i)) by lia.
rewrite H29 in H12.
tauto.
subst new_b.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H29.
apply Z.mod_pos_bound.
lia.
+ assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
apply H28 in H9; try tauto.
}
assert (i < Zlength l_3). {
subst l_3.
rewrite H17.
tauto.
}
assert((sublist 0 (i + 1) l_3) = (sublist 0 i l_3) ++ (Znth i l_3 0) :: nil). {
pose proof (sublist_split 0 (i+1) i l_3).
pose proof (sublist_single i l_3 0).
rewrite <-H31.
apply H30.
lia.
subst l_3.
rewrite Zlength_correct in H29.
lia.
rewrite Zlength_correct in H29.
lia.
}
rewrite H30.
pose proof (__list_store_Z_concat_r (sublist 0 i l_3) val1_2 (Znth i l_3 0)).
apply H31 in H11.
rewrite Zlength_sublist0 in H11.
assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i = Znth i l_3 0 * 4294967296 ^ i + val1_2) by lia.
rewrite H32.
tauto.
subst l_3.
rewrite H17.
lia.
apply list_within_bound_Znth.
lia.
unfold list_store_Z_compact in H9.
tauto.
- pose proof (Zlength_sublist0 i l'_2).
lia.
Qed.
Lemma proof_of_mpn_add_1_return_wit_1 : mpn_add_1_return_wit_1.
Proof.
pre_process.
unfold mpd_store_Z_compact.
unfold mpd_store_list.
Exists val2.
pose proof (list_store_Z_compact_reverse_injection l l_2 val val).
apply H19 in H2; try tauto.
rewrite <-H2 in H10.
assert (i = n_pre) by lia.
rewrite H20 in H4.
rewrite <- H10 in H4.
rewrite (sublist_self l (Zlength l)) in H4; try tauto.
rewrite <-H2 in H12.
assert (list_store_Z l val). { apply list_store_Z_compact_to_normal. tauto. }
pose proof (list_store_Z_injection l l val1 val).
apply H22 in H4; try tauto.
rewrite H4 in H6.
entailer!.
Exists l.
entailer!.
entailer!; try rewrite H20; try tauto.
- rewrite H10.
entailer!.
unfold mpd_store_Z.
unfold mpd_store_list.
Exists l'.
rewrite H7.
subst i.
entailer!.
rewrite H20.
entailer!.
apply store_uint_array_rec_def2undef.
- rewrite <- H20. tauto.
Qed.
Lemma proof_of_mpn_add_1_which_implies_wit_1 : mpn_add_1_which_implies_wit_1.
Proof.
pre_process.
unfold mpd_store_Z_compact.
Intros l.
Exists l.
unfold mpd_store_list.
entailer!.
subst n_pre.
entailer!.
Qed.
Lemma proof_of_mpn_add_1_which_implies_wit_2 : mpn_add_1_which_implies_wit_2.
Proof.
pre_process.
pose proof (store_uint_array_divide rp_pre cap2 l2 0).
pose proof (Zlength_nonneg l2).
specialize (H0 ltac:(lia) ltac:(lia)).
destruct H0 as [H0 _].
simpl in H0.
entailer!.
rewrite (sublist_nil l2 0 0) in H0; [ | lia].
sep_apply H0.
entailer!.
unfold store_uint_array, store_uint_array_rec.
unfold store_array.
rewrite (sublist_self l2 cap2); [ | lia ].
assert (rp_pre + 0 = rp_pre). { lia. }
rewrite H2; clear H2.
assert (cap2 - 0 = cap2). { lia. }
rewrite H2; clear H2.
reflexivity.
Qed.
Lemma proof_of_mpn_add_1_which_implies_wit_3 : mpn_add_1_which_implies_wit_3.
Proof.
pre_process.
destruct l''. {
unfold store_uint_array_rec.
simpl.
entailer!.
}
pose proof (store_uint_array_rec_cons rp_pre i cap2 z l'' ltac:(lia)).
sep_apply H2.
Exists z l''.
entailer!.
assert (i = 0 \/ i > 0). { lia. }
destruct H3.
+ subst.
simpl.
entailer!.
simpl in H2.
assert (rp_pre + 0 = rp_pre). { lia. }
rewrite H3.
rewrite H3 in H2.
clear H3.
pose proof (store_uint_array_empty rp_pre l').
sep_apply H3.
rewrite logic_equiv_andp_comm.
rewrite logic_equiv_coq_prop_andp_sepcon.
Intros.
subst l'.
rewrite app_nil_l.
unfold store_uint_array.
unfold store_array.
unfold store_array_rec.
simpl.
assert (rp_pre + 0 = rp_pre). { lia. }
rewrite H4; clear H4.
entailer!.
+ pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 i (sublist 0 i l') ltac:(lia)).
destruct H4 as [_ H4].
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
rewrite H5 in H4; clear H5.
assert (i - 0 = i). { lia. }
rewrite H5 in H4; clear H5.
pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 (i + 1) (sublist 0 i l' ++ z :: nil) ltac:(lia)).
destruct H5 as [H5 _].
assert (i + 1 - 0 = i + 1). { lia. }
rewrite H6 in H5; clear H6.
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
rewrite H6 in H5; clear H6.
pose proof (uint_array_rec_to_uint_array rp_pre 0 i l').
specialize (H6 H).
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
rewrite H7 in H6; clear H7.
assert ((i-0) = i) by lia.
rewrite H7 in H6; clear H7.
destruct H6 as [_ H6].
sep_apply H6.
(* pose proof (uint_array_rec_to_uint_array rp_pre 0 (i+1) (l' ++ z :: nil)).
assert (H_i_plus_1 : 0 <= i + 1) by lia.
specialize (H7 H_i_plus_1); clear H_i_plus_1.
destruct H7 as [H7 _].
assert (i + 1 - 0 = i + 1) by lia.
rewrite H8 in H7; clear H8.
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
rewrite H8 in H7; clear H8.
rewrite <-H7.
clear H6.
clear H7. *)
pose proof (store_uint_array_divide_rec rp_pre (i+1) (l' ++ z :: nil) i).
assert (H_tmp: 0 <= i <= i+1) by lia.
specialize (H7 H_tmp); clear H_tmp.
rewrite <- store_uint_array_single.
sep_apply store_uint_array_rec_divide_rev.
entailer!.
lia.
Qed.
Lemma proof_of_mpz_clear_return_wit_1_1 : mpz_clear_return_wit_1_1.
Proof.