feat(cmp): Proved correctness of mpn_cmp.
This commit is contained in:
@ -49,6 +49,19 @@ Definition mpd_store_Z (ptr: addr) (n: Z) (size: Z) (cap: Z): Assertion :=
|
||||
EX data,
|
||||
mpd_store_list ptr data cap && [| list_store_Z data n |] && [| size = Zlength data |].
|
||||
|
||||
Lemma list_store_Z_injection: forall l1 l2 n1 n2,
|
||||
list_store_Z l1 n1 ->
|
||||
list_store_Z l2 n2 ->
|
||||
l1 = l2 -> n1 = n2.
|
||||
Proof.
|
||||
intros.
|
||||
unfold list_store_Z in *.
|
||||
destruct H, H0.
|
||||
rewrite <-H, <-H0.
|
||||
rewrite <-H1.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma __list_within_bound_concat_r: forall (l1: list Z) (a: Z),
|
||||
list_within_bound l1 ->
|
||||
0 <= a < UINT_MOD ->
|
||||
@ -350,6 +363,93 @@ Proof.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma list_store_Z_cmp: forall l1 l2 n1 n2 i,
|
||||
0 <= i < Zlength l1 ->
|
||||
Zlength l1 = Zlength l2 ->
|
||||
list_store_Z l1 n1 ->
|
||||
list_store_Z l2 n2 ->
|
||||
sublist (i + 1) (Zlength l1) l1 = sublist (i + 1) (Zlength l2) l2 ->
|
||||
Znth i l1 0 < Znth i l2 0 ->
|
||||
n1 < n2.
|
||||
Proof.
|
||||
intros.
|
||||
assert (Zlength l1 = Z.of_nat (Datatypes.length l1)). { apply Zlength_correct. }
|
||||
pose proof (sublist_split 0 (Zlength l1) i l1 ltac:(lia) ltac:(lia)).
|
||||
assert (Zlength l2 = Z.of_nat (Datatypes.length l2)). { apply Zlength_correct. }
|
||||
pose proof (sublist_split 0 (Zlength l2) i l2 ltac:(lia) ltac:(lia)).
|
||||
clear H5 H7.
|
||||
rewrite (sublist_self l1 (Zlength l1) ltac:(lia)) in H6.
|
||||
rewrite (sublist_self l2 (Zlength l2) ltac:(lia)) in H8.
|
||||
rewrite H6 in H1.
|
||||
rewrite H8 in H2.
|
||||
apply list_store_Z_split in H1, H2.
|
||||
remember (Zlength l1) as n eqn:Hn.
|
||||
assert (Zlength l2 = n). { lia. }
|
||||
rewrite H5 in *.
|
||||
rewrite Zlength_sublist0 in H1, H2; try lia.
|
||||
destruct H1, H2.
|
||||
remember (n1 mod UINT_MOD ^ i) as n1_lo eqn:Hn1_lo.
|
||||
remember (n1 / UINT_MOD ^ i) as n1_hi eqn:Hn1_hi.
|
||||
remember (n2 mod UINT_MOD ^ i) as n2_lo eqn:Hn2_lo.
|
||||
remember (n2 / UINT_MOD ^ i) as n2_hi eqn:Hn2_hi.
|
||||
remember (sublist 0 i l1) as l1_lo eqn:Hl1_lo.
|
||||
remember (sublist i n l1) as l1_hi eqn:Hl1_hi.
|
||||
remember (sublist 0 i l2) as l2_lo eqn:Hl2_lo.
|
||||
remember (sublist i n l2) as l2_hi eqn:Hl2_hi.
|
||||
assert (n1_lo - n2_lo < UINT_MOD ^ i). {
|
||||
pose proof (list_store_Z_bound l1_lo n1_lo H1).
|
||||
pose proof (list_store_Z_bound l2_lo n2_lo H2).
|
||||
rewrite Hl1_lo, Zlength_sublist0 in H10; lia.
|
||||
}
|
||||
assert (n2_hi - n1_hi >= 1). {
|
||||
assert (Zlength l1_hi >= 1 /\ Zlength l2_hi >= 1). {
|
||||
pose proof (Zlength_sublist i n l1 ltac:(lia)).
|
||||
pose proof (Zlength_sublist i n l2 ltac:(lia)).
|
||||
rewrite <-Hl1_hi in H11.
|
||||
rewrite <-Hl2_hi in H12.
|
||||
lia.
|
||||
}
|
||||
destruct H11.
|
||||
destruct l1_hi, l2_hi; try rewrite Zlength_nil in *; try lia.
|
||||
unfold list_store_Z in H7, H9.
|
||||
destruct H7, H9.
|
||||
simpl in H7, H9.
|
||||
assert (forall a (l0 l: list Z),
|
||||
a :: l0 = sublist i n l ->
|
||||
Zlength l = n ->
|
||||
l0 = sublist (i + 1) n l /\ a = Znth i l 0
|
||||
). {
|
||||
intros.
|
||||
assert (n = Z.of_nat(Datatypes.length l)). { rewrite <-Zlength_correct. lia. }
|
||||
pose proof (sublist_split i n (i + 1) l ltac:(lia) ltac:(lia)).
|
||||
rewrite (sublist_single i l 0) in H18; try lia.
|
||||
rewrite <-H15 in H18.
|
||||
rewrite Aux.list_app_single_l in H18.
|
||||
injection H18; intros.
|
||||
rewrite H19, H20.
|
||||
split; reflexivity.
|
||||
}
|
||||
pose proof (H15 z0 l2_hi l2 Hl2_hi ltac:(lia)).
|
||||
specialize (H15 z l1_hi l1 Hl1_hi ltac:(lia)).
|
||||
destruct H15, H16.
|
||||
rewrite H15, H17 in H7.
|
||||
rewrite H16, H18 in H9.
|
||||
rewrite <-H3 in H9.
|
||||
lia.
|
||||
}
|
||||
pose proof (Zmod_eq_full n1 (UINT_MOD ^ i) ltac:(lia)).
|
||||
pose proof (Zmod_eq_full n2 (UINT_MOD ^ i) ltac:(lia)).
|
||||
rewrite <-Hn1_lo, <-Hn1_hi in H12.
|
||||
rewrite <-Hn2_lo, <-Hn2_hi in H13.
|
||||
assert (n2_hi * UINT_MOD ^ i - n1_hi * UINT_MOD ^ i >= UINT_MOD ^ i). {
|
||||
rewrite <-Z.mul_sub_distr_r.
|
||||
pose proof (Zmult_ge_compat_r (n2_hi - n1_hi) 1 (UINT_MOD ^ i) ltac:(lia) ltac:(lia)).
|
||||
rewrite Z.mul_1_l in H14.
|
||||
lia.
|
||||
}
|
||||
lia.
|
||||
Qed.
|
||||
|
||||
End Internal.
|
||||
|
||||
Record bigint_ent: Type := {
|
||||
|
Reference in New Issue
Block a user