feat(cmp): Proved correctness of mpn_cmp.

This commit is contained in:
xiaoh105
2025-06-11 16:54:36 +08:00
parent 4c0b0e98fa
commit 36204b8877
7 changed files with 824 additions and 18 deletions

View File

@ -9,8 +9,8 @@ Require Import Coq.Sorting.Permutation.
From AUXLib Require Import int_auto Axioms Feq Idents List_lemma VMap.
Require Import SetsClass.SetsClass. Import SetsNotation.
From SimpleC.SL Require Import Mem SeparationLogic.
Require Import GmpLib.GmpNumber. Import Internal.
Require Import Logic.LogicGenerator.demo932.Interface.
Require Import GmpLib.GmpNumber. Import Internal.
Local Open Scope Z_scope.
Local Open Scope sets.
Local Open Scope string.
@ -591,6 +591,562 @@ forall (cap2: Z) (l': (@list Z)) (l: (@list Z)) (i: Z) (n: Z) (d: Z) ,
** (store_uint_array d (i + 1 ) (app ((sublist (0) (i) (l))) ((cons (a) (nil)))) )
.
(*----- Function mpn_cmp -----*)
Definition mpn_cmp_safety_wit_1 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) ,
[| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
** ((( &( "n" ) )) # Int |-> n_pre)
** ((( &( "bp" ) )) # Ptr |-> bp_pre)
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|--
[| ((n_pre - 1 ) <= INT_MAX) |]
&& [| ((INT_MIN) <= (n_pre - 1 )) |]
.
Definition mpn_cmp_safety_wit_2 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& ((( &( "n" ) )) # Int |-> n)
** (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
** ((( &( "bp" ) )) # Ptr |-> bp_pre)
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|--
[| (0 <= INT_MAX) |]
&& [| ((INT_MIN) <= 0) |]
.
Definition mpn_cmp_safety_wit_3 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| ((Znth n l1 0) <= (Znth n l2 0)) |]
&& [| ((Znth n l1 0) <> (Znth n l2 0)) |]
&& [| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array bp_pre n_pre l2 )
** (store_uint_array ap_pre n_pre l1 )
** ((( &( "n" ) )) # Int |-> n)
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
** ((( &( "bp" ) )) # Ptr |-> bp_pre)
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|--
[| (1 <> (INT_MIN)) |]
.
Definition mpn_cmp_safety_wit_4 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| ((Znth n l1 0) <= (Znth n l2 0)) |]
&& [| ((Znth n l1 0) <> (Znth n l2 0)) |]
&& [| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array bp_pre n_pre l2 )
** (store_uint_array ap_pre n_pre l1 )
** ((( &( "n" ) )) # Int |-> n)
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
** ((( &( "bp" ) )) # Ptr |-> bp_pre)
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|--
[| (1 <= INT_MAX) |]
&& [| ((INT_MIN) <= 1) |]
.
Definition mpn_cmp_safety_wit_5 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| ((Znth n l1 0) > (Znth n l2 0)) |]
&& [| ((Znth n l1 0) <> (Znth n l2 0)) |]
&& [| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array bp_pre n_pre l2 )
** (store_uint_array ap_pre n_pre l1 )
** ((( &( "n" ) )) # Int |-> n)
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
** ((( &( "bp" ) )) # Ptr |-> bp_pre)
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|--
[| (1 <= INT_MAX) |]
&& [| ((INT_MIN) <= 1) |]
.
Definition mpn_cmp_safety_wit_6 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| ((Znth n l1 0) = (Znth n l2 0)) |]
&& [| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array bp_pre n_pre l2 )
** (store_uint_array ap_pre n_pre l1 )
** ((( &( "n" ) )) # Int |-> n)
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
** ((( &( "bp" ) )) # Ptr |-> bp_pre)
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|--
[| ((n - 1 ) <= INT_MAX) |]
&& [| ((INT_MIN) <= (n - 1 )) |]
.
Definition mpn_cmp_safety_wit_7 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| (n < 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& ((( &( "n" ) )) # Int |-> n)
** (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
** ((( &( "bp" ) )) # Ptr |-> bp_pre)
** ((( &( "ap" ) )) # Ptr |-> ap_pre)
|--
[| (0 <= INT_MAX) |]
&& [| ((INT_MIN) <= 0) |]
.
Definition mpn_cmp_entail_wit_1 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) ,
[| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
|--
[| ((-1) <= (n_pre - 1 )) |]
&& [| ((n_pre - 1 ) < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist (((n_pre - 1 ) + 1 )) (n_pre) (l1)) = (sublist (((n_pre - 1 ) + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
.
Definition mpn_cmp_entail_wit_2 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| ((Znth n l1 0) = (Znth n l2 0)) |]
&& [| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array bp_pre n_pre l2 )
** (store_uint_array ap_pre n_pre l1 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
|--
[| ((-1) <= (n - 1 )) |]
&& [| ((n - 1 ) < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist (((n - 1 ) + 1 )) (n_pre) (l1)) = (sublist (((n - 1 ) + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
.
Definition mpn_cmp_return_wit_1_1 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| ((Znth n l1 0) <= (Znth n l2 0)) |]
&& [| ((Znth n l1 0) <> (Znth n l2 0)) |]
&& [| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array bp_pre n_pre l2 )
** (store_uint_array ap_pre n_pre l1 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
|--
([| (val1 < val2) |]
&& [| ((-1) = (-1)) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 ))
||
([| (val1 = val2) |]
&& [| ((-1) = 0) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 ))
||
([| (val1 > val2) |]
&& [| ((-1) = 1) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 ))
.
Definition mpn_cmp_return_wit_1_2 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| ((Znth n l1 0) > (Znth n l2 0)) |]
&& [| ((Znth n l1 0) <> (Znth n l2 0)) |]
&& [| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array bp_pre n_pre l2 )
** (store_uint_array ap_pre n_pre l1 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
|--
([| (val1 < val2) |]
&& [| (1 = (-1)) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 ))
||
([| (val1 = val2) |]
&& [| (1 = 0) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 ))
||
([| (val1 > val2) |]
&& [| (1 = 1) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 ))
.
Definition mpn_cmp_return_wit_2 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| (n < 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
|--
([| (val1 < val2) |]
&& [| (0 = (-1)) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 ))
||
([| (val1 = val2) |]
&& [| (0 = 0) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 ))
||
([| (val1 > val2) |]
&& [| (0 = 1) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 ))
.
Definition mpn_cmp_partial_solve_wit_1 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) ,
[| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 )
|--
[| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 )
.
Definition mpn_cmp_partial_solve_wit_2 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
|--
[| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (((ap_pre + (n * sizeof(UINT) ) )) # UInt |-> (Znth n l1 0))
** (store_uint_array_missing_i_rec ap_pre n 0 n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
.
Definition mpn_cmp_partial_solve_wit_3 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (l1: (@list Z)) (n: Z) ,
[| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
|--
[| (n >= 0) |]
&& [| ((-1) <= n) |]
&& [| (n < n_pre) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| ((sublist ((n + 1 )) (n_pre) (l1)) = (sublist ((n + 1 )) (n_pre) (l2))) |]
&& [| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& [| (0 < n_pre) |]
&& [| (n_pre <= cap1) |]
&& [| (n_pre <= cap2) |]
&& [| (cap1 <= 100000000) |]
&& [| (cap2 <= 100000000) |]
&& (((bp_pre + (n * sizeof(UINT) ) )) # UInt |-> (Znth n l2 0))
** (store_uint_array_missing_i_rec bp_pre n 0 n_pre l2 )
** (store_uint_array ap_pre n_pre l1 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
.
Definition mpn_cmp_which_implies_wit_1 :=
forall (n_pre: Z) (bp_pre: Z) (ap_pre: Z) (val2: Z) (val1: Z) (cap2: Z) (cap1: Z) ,
(mpd_store_Z ap_pre val1 n_pre cap1 )
** (mpd_store_Z bp_pre val2 n_pre cap2 )
|--
EX (l2: (@list Z)) (l1: (@list Z)) ,
[| (list_store_Z l1 val1 ) |]
&& [| (list_store_Z l2 val2 ) |]
&& [| (n_pre = (Zlength (l1))) |]
&& [| (n_pre = (Zlength (l2))) |]
&& (store_uint_array ap_pre n_pre l1 )
** (store_uint_array bp_pre n_pre l2 )
** (store_undef_uint_array_rec ap_pre (n_pre + 1 ) cap1 )
** (store_undef_uint_array_rec bp_pre (n_pre + 1 ) cap2 )
.
Module Type VC_Correct.
Axiom proof_of_gmp_abs_safety_wit_1 : gmp_abs_safety_wit_1.
@ -620,5 +1176,21 @@ Axiom proof_of_mpn_copyi_partial_solve_wit_5 : mpn_copyi_partial_solve_wit_5.
Axiom proof_of_mpn_copyi_which_implies_wit_1 : mpn_copyi_which_implies_wit_1.
Axiom proof_of_mpn_copyi_which_implies_wit_2 : mpn_copyi_which_implies_wit_2.
Axiom proof_of_mpn_copyi_which_implies_wit_3 : mpn_copyi_which_implies_wit_3.
Axiom proof_of_mpn_cmp_safety_wit_1 : mpn_cmp_safety_wit_1.
Axiom proof_of_mpn_cmp_safety_wit_2 : mpn_cmp_safety_wit_2.
Axiom proof_of_mpn_cmp_safety_wit_3 : mpn_cmp_safety_wit_3.
Axiom proof_of_mpn_cmp_safety_wit_4 : mpn_cmp_safety_wit_4.
Axiom proof_of_mpn_cmp_safety_wit_5 : mpn_cmp_safety_wit_5.
Axiom proof_of_mpn_cmp_safety_wit_6 : mpn_cmp_safety_wit_6.
Axiom proof_of_mpn_cmp_safety_wit_7 : mpn_cmp_safety_wit_7.
Axiom proof_of_mpn_cmp_entail_wit_1 : mpn_cmp_entail_wit_1.
Axiom proof_of_mpn_cmp_entail_wit_2 : mpn_cmp_entail_wit_2.
Axiom proof_of_mpn_cmp_return_wit_1_1 : mpn_cmp_return_wit_1_1.
Axiom proof_of_mpn_cmp_return_wit_1_2 : mpn_cmp_return_wit_1_2.
Axiom proof_of_mpn_cmp_return_wit_2 : mpn_cmp_return_wit_2.
Axiom proof_of_mpn_cmp_partial_solve_wit_1 : mpn_cmp_partial_solve_wit_1.
Axiom proof_of_mpn_cmp_partial_solve_wit_2 : mpn_cmp_partial_solve_wit_2.
Axiom proof_of_mpn_cmp_partial_solve_wit_3 : mpn_cmp_partial_solve_wit_3.
Axiom proof_of_mpn_cmp_which_implies_wit_1 : mpn_cmp_which_implies_wit_1.
End VC_Correct.