feat(mpn_copyi): Proved correctness of mpn_copyi and other simple util functions.
This commit is contained in:
@ -100,5 +100,91 @@ Proof.
|
||||
rewrite IHl1.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma store_array_rec_false: forall x storeA lo hi (l: list Z),
|
||||
lo > hi ->
|
||||
store_array_rec storeA x lo hi l |-- [| False |].
|
||||
Proof.
|
||||
intros.
|
||||
revert x storeA lo hi H.
|
||||
induction l; intros.
|
||||
+ simpl.
|
||||
entailer!.
|
||||
+ simpl.
|
||||
specialize (IHl x storeA (lo + 1) hi ltac:(lia)).
|
||||
sep_apply IHl.
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
Lemma store_array_rec_empty: forall x storeA lo (l: list Z),
|
||||
store_array_rec storeA x lo lo l |-- emp && [| l = nil |].
|
||||
Proof.
|
||||
intros.
|
||||
destruct l.
|
||||
+ simpl.
|
||||
entailer!.
|
||||
+ simpl.
|
||||
sep_apply store_array_rec_false; [ entailer! | lia ].
|
||||
Qed.
|
||||
|
||||
Lemma store_uint_array_rec_false: forall x lo hi l,
|
||||
lo > hi ->
|
||||
store_uint_array_rec x lo hi l |-- [| False |].
|
||||
Proof.
|
||||
intros.
|
||||
unfold store_uint_array_rec.
|
||||
sep_apply store_array_rec_false; [ entailer! | lia ].
|
||||
Qed.
|
||||
|
||||
Lemma store_uint_array_rec_empty: forall x lo l,
|
||||
store_uint_array_rec x lo lo l |-- emp && [| l = nil |].
|
||||
Proof.
|
||||
induction l.
|
||||
+ unfold store_uint_array_rec.
|
||||
simpl.
|
||||
entailer!.
|
||||
+ pose proof (store_uint_array_rec_false x (lo + 1) lo l ltac:(lia)).
|
||||
unfold store_uint_array_rec in *.
|
||||
simpl in *.
|
||||
sep_apply H.
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
Lemma store_uint_array_empty: forall x l,
|
||||
store_uint_array x 0 l |-- emp && [| l = nil |].
|
||||
Proof.
|
||||
intros x l.
|
||||
revert x.
|
||||
induction l; intros.
|
||||
+ unfold store_uint_array, store_array.
|
||||
simpl.
|
||||
entailer!.
|
||||
+ unfold store_uint_array, store_array.
|
||||
simpl.
|
||||
sep_apply store_array_rec_false; [ entailer! | lia ].
|
||||
Qed.
|
||||
|
||||
Lemma store_uarray_rec_equals_store_uarray: forall x lo hi l,
|
||||
lo < hi ->
|
||||
store_uint_array_rec x lo hi l --||--
|
||||
store_uint_array (x + sizeof(UINT) * lo) (hi - lo) l.
|
||||
Proof.
|
||||
intros.
|
||||
unfold store_uint_array_rec, store_uint_array, store_array.
|
||||
pose proof (store_array_rec_base x 0 lo hi l (sizeof(UINT))
|
||||
store_uint
|
||||
(fun (x: addr) (lo a: Z) =>
|
||||
(x + lo * sizeof(UINT)) # UInt |-> a) ltac:(reflexivity)).
|
||||
assert (x + sizeof(UINT) * lo = x + lo * sizeof(UINT)). { lia. }
|
||||
rewrite H1; clear H1.
|
||||
assert (0 + lo = lo). { lia. }
|
||||
repeat rewrite H1 in H0; clear H1.
|
||||
destruct H0.
|
||||
split.
|
||||
+ sep_apply H0.
|
||||
entailer!.
|
||||
+ sep_apply H1.
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
End Aux.
|
@ -21,11 +21,12 @@ Import naive_C_Rules.
|
||||
Local Open Scope sac.
|
||||
|
||||
Notation "'UINT_MOD'" := (4294967296).
|
||||
Notation "'LENGTH_MAX'" := (100000000).
|
||||
|
||||
Module Internal.
|
||||
|
||||
Definition mpd_store_list (ptr: addr) (data: list Z) (cap: Z): Assertion :=
|
||||
[| Zlength data <= cap |] &&
|
||||
[| Zlength data <= cap |] && [| cap <= LENGTH_MAX |] &&
|
||||
store_uint_array ptr (Zlength data) data **
|
||||
store_undef_uint_array_rec ptr ((Zlength data) + 1) cap.
|
||||
|
||||
@ -46,7 +47,7 @@ Definition list_store_Z (data: list Z) (n: Z): Prop :=
|
||||
|
||||
Definition mpd_store_Z (ptr: addr) (n: Z) (size: Z) (cap: Z): Assertion :=
|
||||
EX data,
|
||||
mpd_store_list ptr data cap && [| list_store_Z data n|] && [| size = Zlength data |].
|
||||
mpd_store_list ptr data cap && [| list_store_Z data n |] && [| size = Zlength data |].
|
||||
|
||||
Lemma __list_within_bound_concat_r: forall (l1: list Z) (a: Z),
|
||||
list_within_bound l1 ->
|
||||
|
624
projects/lib/gmp_goal.v
Normal file
624
projects/lib/gmp_goal.v
Normal file
@ -0,0 +1,624 @@
|
||||
Require Import Coq.ZArith.ZArith.
|
||||
Require Import Coq.Bool.Bool.
|
||||
Require Import Coq.Strings.String.
|
||||
Require Import Coq.Lists.List.
|
||||
Require Import Coq.Classes.RelationClasses.
|
||||
Require Import Coq.Classes.Morphisms.
|
||||
Require Import Coq.micromega.Psatz.
|
||||
Require Import Coq.Sorting.Permutation.
|
||||
From AUXLib Require Import int_auto Axioms Feq Idents List_lemma VMap.
|
||||
Require Import SetsClass.SetsClass. Import SetsNotation.
|
||||
From SimpleC.SL Require Import Mem SeparationLogic.
|
||||
Require Import GmpLib.GmpNumber. Import Internal.
|
||||
Require Import Logic.LogicGenerator.demo932.Interface.
|
||||
Local Open Scope Z_scope.
|
||||
Local Open Scope sets.
|
||||
Local Open Scope string.
|
||||
Local Open Scope list.
|
||||
Import naive_C_Rules.
|
||||
Local Open Scope sac.
|
||||
|
||||
Definition Zmax := Z.max.
|
||||
|
||||
(*----- Function gmp_abs -----*)
|
||||
|
||||
Definition gmp_abs_safety_wit_1 :=
|
||||
forall (x_pre: Z) ,
|
||||
[| (x_pre < 0) |]
|
||||
&& [| (INT_MIN < x_pre) |]
|
||||
&& [| (x_pre <= INT_MAX) |]
|
||||
&& ((( &( "x" ) )) # Int |-> x_pre)
|
||||
|--
|
||||
[| (x_pre <> (INT_MIN)) |]
|
||||
.
|
||||
|
||||
Definition gmp_abs_return_wit_1_1 :=
|
||||
forall (x_pre: Z) ,
|
||||
[| (x_pre < 0) |]
|
||||
&& [| (INT_MIN < x_pre) |]
|
||||
&& [| (x_pre <= INT_MAX) |]
|
||||
&& emp
|
||||
|--
|
||||
[| ((-x_pre) = (Zabs (x_pre))) |]
|
||||
&& emp
|
||||
.
|
||||
|
||||
Definition gmp_abs_return_wit_1_2 :=
|
||||
forall (x_pre: Z) ,
|
||||
[| (x_pre >= 0) |]
|
||||
&& [| (INT_MIN < x_pre) |]
|
||||
&& [| (x_pre <= INT_MAX) |]
|
||||
&& emp
|
||||
|--
|
||||
[| (x_pre = (Zabs (x_pre))) |]
|
||||
&& emp
|
||||
.
|
||||
|
||||
(*----- Function gmp_max -----*)
|
||||
|
||||
Definition gmp_max_return_wit_1_1 :=
|
||||
forall (b_pre: Z) (a_pre: Z) ,
|
||||
[| (a_pre <= b_pre) |]
|
||||
&& emp
|
||||
|--
|
||||
[| (b_pre = (Zmax (a_pre) (b_pre))) |]
|
||||
&& emp
|
||||
.
|
||||
|
||||
Definition gmp_max_return_wit_1_2 :=
|
||||
forall (b_pre: Z) (a_pre: Z) ,
|
||||
[| (a_pre > b_pre) |]
|
||||
&& emp
|
||||
|--
|
||||
[| (a_pre = (Zmax (a_pre) (b_pre))) |]
|
||||
&& emp
|
||||
.
|
||||
|
||||
(*----- Function gmp_cmp -----*)
|
||||
|
||||
Definition gmp_cmp_safety_wit_1 :=
|
||||
forall (b_pre: Z) (a_pre: Z) ,
|
||||
[| (a_pre >= b_pre) |]
|
||||
&& [| (a_pre <= b_pre) |]
|
||||
&& ((( &( "b" ) )) # Int |-> b_pre)
|
||||
** ((( &( "a" ) )) # Int |-> a_pre)
|
||||
|--
|
||||
[| ((0 - 0 ) <= INT_MAX) |]
|
||||
&& [| ((INT_MIN) <= (0 - 0 )) |]
|
||||
.
|
||||
|
||||
Definition gmp_cmp_safety_wit_2 :=
|
||||
forall (b_pre: Z) (a_pre: Z) ,
|
||||
[| (a_pre < b_pre) |]
|
||||
&& [| (a_pre <= b_pre) |]
|
||||
&& ((( &( "b" ) )) # Int |-> b_pre)
|
||||
** ((( &( "a" ) )) # Int |-> a_pre)
|
||||
|--
|
||||
[| ((0 - 1 ) <= INT_MAX) |]
|
||||
&& [| ((INT_MIN) <= (0 - 1 )) |]
|
||||
.
|
||||
|
||||
Definition gmp_cmp_safety_wit_3 :=
|
||||
forall (b_pre: Z) (a_pre: Z) ,
|
||||
[| (a_pre >= b_pre) |]
|
||||
&& [| (a_pre > b_pre) |]
|
||||
&& ((( &( "b" ) )) # Int |-> b_pre)
|
||||
** ((( &( "a" ) )) # Int |-> a_pre)
|
||||
|--
|
||||
[| ((1 - 0 ) <= INT_MAX) |]
|
||||
&& [| ((INT_MIN) <= (1 - 0 )) |]
|
||||
.
|
||||
|
||||
Definition gmp_cmp_safety_wit_4 :=
|
||||
forall (b_pre: Z) (a_pre: Z) ,
|
||||
[| (a_pre < b_pre) |]
|
||||
&& [| (a_pre > b_pre) |]
|
||||
&& ((( &( "b" ) )) # Int |-> b_pre)
|
||||
** ((( &( "a" ) )) # Int |-> a_pre)
|
||||
|--
|
||||
[| False |]
|
||||
.
|
||||
|
||||
Definition gmp_cmp_return_wit_1_1 :=
|
||||
forall (b_pre: Z) (a_pre: Z) ,
|
||||
[| (a_pre >= b_pre) |]
|
||||
&& [| (a_pre > b_pre) |]
|
||||
&& emp
|
||||
|--
|
||||
([| (a_pre < b_pre) |]
|
||||
&& [| ((1 - 0 ) = (-1)) |]
|
||||
&& emp)
|
||||
||
|
||||
([| (a_pre = b_pre) |]
|
||||
&& [| ((1 - 0 ) = 0) |]
|
||||
&& emp)
|
||||
||
|
||||
([| (a_pre > b_pre) |]
|
||||
&& [| ((1 - 0 ) = 1) |]
|
||||
&& emp)
|
||||
.
|
||||
|
||||
Definition gmp_cmp_return_wit_1_2 :=
|
||||
forall (b_pre: Z) (a_pre: Z) ,
|
||||
[| (a_pre < b_pre) |]
|
||||
&& [| (a_pre <= b_pre) |]
|
||||
&& emp
|
||||
|--
|
||||
([| (a_pre < b_pre) |]
|
||||
&& [| ((0 - 1 ) = (-1)) |]
|
||||
&& emp)
|
||||
||
|
||||
([| (a_pre = b_pre) |]
|
||||
&& [| ((0 - 1 ) = 0) |]
|
||||
&& emp)
|
||||
||
|
||||
([| (a_pre > b_pre) |]
|
||||
&& [| ((0 - 1 ) = 1) |]
|
||||
&& emp)
|
||||
.
|
||||
|
||||
Definition gmp_cmp_return_wit_1_3 :=
|
||||
forall (b_pre: Z) (a_pre: Z) ,
|
||||
[| (a_pre >= b_pre) |]
|
||||
&& [| (a_pre <= b_pre) |]
|
||||
&& emp
|
||||
|--
|
||||
([| (a_pre < b_pre) |]
|
||||
&& [| ((0 - 0 ) = (-1)) |]
|
||||
&& emp)
|
||||
||
|
||||
([| (a_pre = b_pre) |]
|
||||
&& [| ((0 - 0 ) = 0) |]
|
||||
&& emp)
|
||||
||
|
||||
([| (a_pre > b_pre) |]
|
||||
&& [| ((0 - 0 ) = 1) |]
|
||||
&& emp)
|
||||
.
|
||||
|
||||
(*----- Function mpn_copyi -----*)
|
||||
|
||||
Definition mpn_copyi_safety_wit_1 :=
|
||||
forall (n_pre: Z) (s_pre: Z) (d_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) ,
|
||||
[| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& ((( &( "i" ) )) # Int |->_)
|
||||
** ((( &( "d" ) )) # Ptr |-> d_pre)
|
||||
** (store_uint_array_rec d_pre 0 cap2 l2 )
|
||||
** (store_uint_array d_pre 0 nil )
|
||||
** ((( &( "n" ) )) # Int |-> n_pre)
|
||||
** ((( &( "s" ) )) # Ptr |-> s_pre)
|
||||
** (store_uint_array s_pre n_pre l )
|
||||
** (store_undef_uint_array_rec s_pre (n_pre + 1 ) cap1 )
|
||||
|--
|
||||
[| (0 <= INT_MAX) |]
|
||||
&& [| ((INT_MIN) <= 0) |]
|
||||
.
|
||||
|
||||
Definition mpn_copyi_safety_wit_2 :=
|
||||
forall (n_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) (l': (@list Z)) (d: Z) (s: Z) (l_2: (@list Z)) (n: Z) (i: Z) (a: Z) (l2': (@list Z)) ,
|
||||
[| (l' = (cons (a) (l2'))) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l_2)) = n) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array d (i + 1 ) (replace_Znth (i) ((Znth i l_2 0)) ((app ((sublist (0) (i) (l_2))) ((cons (a) (nil)))))) )
|
||||
** (store_uint_array s n l_2 )
|
||||
** ((( &( "i" ) )) # Int |-> i)
|
||||
** ((( &( "n" ) )) # Int |-> n)
|
||||
** ((( &( "d" ) )) # Ptr |-> d)
|
||||
** (store_uint_array_rec d (i + 1 ) cap2 l2' )
|
||||
** ((( &( "s" ) )) # Ptr |-> s)
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
|--
|
||||
[| ((i + 1 ) <= INT_MAX) |]
|
||||
&& [| ((INT_MIN) <= (i + 1 )) |]
|
||||
.
|
||||
|
||||
Definition mpn_copyi_entail_wit_1 :=
|
||||
forall (n_pre: Z) (s_pre: Z) (d_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l_2: (@list Z)) ,
|
||||
[| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l_2)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array_rec d_pre 0 cap2 l2 )
|
||||
** (store_uint_array d_pre 0 nil )
|
||||
** (store_uint_array s_pre n_pre l_2 )
|
||||
** (store_undef_uint_array_rec s_pre (n_pre + 1 ) cap1 )
|
||||
|--
|
||||
EX (l': (@list Z)) (l: (@list Z)) ,
|
||||
[| (0 <= 0) |]
|
||||
&& [| (0 <= n_pre) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l_2)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array s_pre n_pre l )
|
||||
** (store_undef_uint_array_rec s_pre (n_pre + 1 ) cap1 )
|
||||
** (store_uint_array d_pre 0 (sublist (0) (0) (l)) )
|
||||
** (store_uint_array_rec d_pre 0 cap2 l' )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_entail_wit_2 :=
|
||||
forall (n_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l_2: (@list Z)) (l'_2: (@list Z)) (d: Z) (s: Z) (l_3: (@list Z)) (n: Z) (i: Z) (a: Z) (l2': (@list Z)) ,
|
||||
[| (l'_2 = (cons (a) (l2'))) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l_3)) = n) |]
|
||||
&& [| (list_store_Z l_3 val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l_2)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array d (i + 1 ) (replace_Znth (i) ((Znth i l_3 0)) ((app ((sublist (0) (i) (l_3))) ((cons (a) (nil)))))) )
|
||||
** (store_uint_array s n l_3 )
|
||||
** (store_uint_array_rec d (i + 1 ) cap2 l2' )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
|--
|
||||
EX (l': (@list Z)) (l: (@list Z)) ,
|
||||
[| (0 <= (i + 1 )) |]
|
||||
&& [| ((i + 1 ) <= n) |]
|
||||
&& [| ((Zlength (l)) = n) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l_2)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array s n l )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
** (store_uint_array d (i + 1 ) (sublist (0) ((i + 1 )) (l)) )
|
||||
** (store_uint_array_rec d (i + 1 ) cap2 l' )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_return_wit_1 :=
|
||||
forall (n_pre: Z) (s_pre: Z) (d_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l_2: (@list Z)) (l': (@list Z)) (d: Z) (s: Z) (l: (@list Z)) (n: Z) (i: Z) ,
|
||||
[| (i >= n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l)) = n) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l_2)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array s n l )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
** (store_uint_array d i (sublist (0) (i) (l)) )
|
||||
** (store_uint_array_rec d i cap2 l' )
|
||||
|--
|
||||
(mpd_store_Z s_pre val n_pre cap1 )
|
||||
** (mpd_store_Z d_pre val n_pre cap2 )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_partial_solve_wit_1 :=
|
||||
forall (n_pre: Z) (s_pre: Z) (d_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) ,
|
||||
[| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (mpd_store_Z s_pre val n_pre cap1 )
|
||||
** (store_uint_array d_pre cap2 l2 )
|
||||
|--
|
||||
[| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (mpd_store_Z s_pre val n_pre cap1 )
|
||||
** (store_uint_array d_pre cap2 l2 )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_partial_solve_wit_2_pure :=
|
||||
forall (n_pre: Z) (s_pre: Z) (d_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) ,
|
||||
[| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& ((( &( "n" ) )) # Int |-> n_pre)
|
||||
** ((( &( "s" ) )) # Ptr |-> s_pre)
|
||||
** (store_uint_array s_pre n_pre l )
|
||||
** (store_undef_uint_array_rec s_pre (n_pre + 1 ) cap1 )
|
||||
** ((( &( "d" ) )) # Ptr |-> d_pre)
|
||||
** (store_uint_array d_pre cap2 l2 )
|
||||
|--
|
||||
[| ((Zlength (l2)) = cap2) |]
|
||||
.
|
||||
|
||||
Definition mpn_copyi_partial_solve_wit_2_aux :=
|
||||
forall (n_pre: Z) (s_pre: Z) (d_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) ,
|
||||
[| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array s_pre n_pre l )
|
||||
** (store_undef_uint_array_rec s_pre (n_pre + 1 ) cap1 )
|
||||
** (store_uint_array d_pre cap2 l2 )
|
||||
|--
|
||||
[| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array d_pre cap2 l2 )
|
||||
** (store_uint_array s_pre n_pre l )
|
||||
** (store_undef_uint_array_rec s_pre (n_pre + 1 ) cap1 )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_partial_solve_wit_2 := mpn_copyi_partial_solve_wit_2_pure -> mpn_copyi_partial_solve_wit_2_aux.
|
||||
|
||||
Definition mpn_copyi_partial_solve_wit_3_pure :=
|
||||
forall (n_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l_2: (@list Z)) (l': (@list Z)) (d: Z) (s: Z) (l: (@list Z)) (n: Z) (i: Z) ,
|
||||
[| (i < n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l)) = n) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l_2)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& ((( &( "i" ) )) # Int |-> i)
|
||||
** ((( &( "n" ) )) # Int |-> n)
|
||||
** ((( &( "s" ) )) # Ptr |-> s)
|
||||
** (store_uint_array s n l )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
** ((( &( "d" ) )) # Ptr |-> d)
|
||||
** (store_uint_array d i (sublist (0) (i) (l)) )
|
||||
** (store_uint_array_rec d i cap2 l' )
|
||||
|--
|
||||
[| (0 <= i) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
.
|
||||
|
||||
Definition mpn_copyi_partial_solve_wit_3_aux :=
|
||||
forall (n_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) (l': (@list Z)) (d: Z) (s: Z) (l_2: (@list Z)) (n: Z) (i: Z) ,
|
||||
[| (i < n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l_2)) = n) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array s n l_2 )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
** (store_uint_array d i (sublist (0) (i) (l_2)) )
|
||||
** (store_uint_array_rec d i cap2 l' )
|
||||
|--
|
||||
[| (0 <= i) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l_2)) = n) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array_rec d i cap2 l' )
|
||||
** (store_uint_array d i (sublist (0) (i) (l_2)) )
|
||||
** (store_uint_array s n l_2 )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_partial_solve_wit_3 := mpn_copyi_partial_solve_wit_3_pure -> mpn_copyi_partial_solve_wit_3_aux.
|
||||
|
||||
Definition mpn_copyi_partial_solve_wit_4 :=
|
||||
forall (n_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) (l': (@list Z)) (d: Z) (s: Z) (l_2: (@list Z)) (n: Z) (i: Z) (a: Z) (l2': (@list Z)) ,
|
||||
[| (l' = (cons (a) (l2'))) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l_2)) = n) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array_rec d (i + 1 ) cap2 l2' )
|
||||
** (store_uint_array d (i + 1 ) (app ((sublist (0) (i) (l_2))) ((cons (a) (nil)))) )
|
||||
** (store_uint_array s n l_2 )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
|--
|
||||
[| (l' = (cons (a) (l2'))) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l_2)) = n) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (((s + (i * sizeof(UINT) ) )) # UInt |-> (Znth i l_2 0))
|
||||
** (store_uint_array_missing_i_rec s i 0 n l_2 )
|
||||
** (store_uint_array_rec d (i + 1 ) cap2 l2' )
|
||||
** (store_uint_array d (i + 1 ) (app ((sublist (0) (i) (l_2))) ((cons (a) (nil)))) )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_partial_solve_wit_5 :=
|
||||
forall (n_pre: Z) (cap2: Z) (cap1: Z) (l2: (@list Z)) (val: Z) (l: (@list Z)) (l': (@list Z)) (d: Z) (s: Z) (l_2: (@list Z)) (n: Z) (i: Z) (a: Z) (l2': (@list Z)) ,
|
||||
[| (l' = (cons (a) (l2'))) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l_2)) = n) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (store_uint_array s n l_2 )
|
||||
** (store_uint_array_rec d (i + 1 ) cap2 l2' )
|
||||
** (store_uint_array d (i + 1 ) (app ((sublist (0) (i) (l_2))) ((cons (a) (nil)))) )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
|--
|
||||
[| (l' = (cons (a) (l2'))) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (0 <= i) |]
|
||||
&& [| (i <= n) |]
|
||||
&& [| ((Zlength (l_2)) = n) |]
|
||||
&& [| (list_store_Z l_2 val ) |]
|
||||
&& [| (n <= cap1) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (n_pre <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n_pre) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& [| ((Zlength (l2)) = cap2) |]
|
||||
&& [| (cap2 >= n_pre) |]
|
||||
&& (((d + (i * sizeof(UINT) ) )) # UInt |->_)
|
||||
** (store_uint_array_missing_i_rec d i 0 (i + 1 ) (app ((sublist (0) (i) (l_2))) ((cons (a) (nil)))) )
|
||||
** (store_uint_array s n l_2 )
|
||||
** (store_uint_array_rec d (i + 1 ) cap2 l2' )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_which_implies_wit_1 :=
|
||||
forall (cap1: Z) (val: Z) (n: Z) (s: Z) ,
|
||||
(mpd_store_Z s val n cap1 )
|
||||
|--
|
||||
EX (l: (@list Z)) ,
|
||||
[| (n <= cap1) |]
|
||||
&& [| ((Zlength (l)) = n) |]
|
||||
&& [| (cap1 <= 100000000) |]
|
||||
&& [| (list_store_Z l val ) |]
|
||||
&& (store_uint_array s n l )
|
||||
** (store_undef_uint_array_rec s (n + 1 ) cap1 )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_which_implies_wit_2 :=
|
||||
forall (cap2: Z) (l2: (@list Z)) (d: Z) ,
|
||||
[| ((Zlength (l2)) = cap2) |]
|
||||
&& (store_uint_array d cap2 l2 )
|
||||
|--
|
||||
[| ((Zlength (l2)) = cap2) |]
|
||||
&& (store_uint_array_rec d 0 cap2 l2 )
|
||||
** (store_uint_array d 0 nil )
|
||||
.
|
||||
|
||||
Definition mpn_copyi_which_implies_wit_3 :=
|
||||
forall (cap2: Z) (l': (@list Z)) (l: (@list Z)) (i: Z) (n: Z) (d: Z) ,
|
||||
[| (0 <= i) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
&& (store_uint_array_rec d i cap2 l' )
|
||||
** (store_uint_array d i (sublist (0) (i) (l)) )
|
||||
|--
|
||||
EX (a: Z) (l2': (@list Z)) ,
|
||||
[| (l' = (cons (a) (l2'))) |]
|
||||
&& [| (i < n) |]
|
||||
&& [| (n <= cap2) |]
|
||||
&& (store_uint_array_rec d (i + 1 ) cap2 l2' )
|
||||
** (store_uint_array d (i + 1 ) (app ((sublist (0) (i) (l))) ((cons (a) (nil)))) )
|
||||
.
|
||||
|
||||
Module Type VC_Correct.
|
||||
|
||||
Axiom proof_of_gmp_abs_safety_wit_1 : gmp_abs_safety_wit_1.
|
||||
Axiom proof_of_gmp_abs_return_wit_1_1 : gmp_abs_return_wit_1_1.
|
||||
Axiom proof_of_gmp_abs_return_wit_1_2 : gmp_abs_return_wit_1_2.
|
||||
Axiom proof_of_gmp_max_return_wit_1_1 : gmp_max_return_wit_1_1.
|
||||
Axiom proof_of_gmp_max_return_wit_1_2 : gmp_max_return_wit_1_2.
|
||||
Axiom proof_of_gmp_cmp_safety_wit_1 : gmp_cmp_safety_wit_1.
|
||||
Axiom proof_of_gmp_cmp_safety_wit_2 : gmp_cmp_safety_wit_2.
|
||||
Axiom proof_of_gmp_cmp_safety_wit_3 : gmp_cmp_safety_wit_3.
|
||||
Axiom proof_of_gmp_cmp_safety_wit_4 : gmp_cmp_safety_wit_4.
|
||||
Axiom proof_of_gmp_cmp_return_wit_1_1 : gmp_cmp_return_wit_1_1.
|
||||
Axiom proof_of_gmp_cmp_return_wit_1_2 : gmp_cmp_return_wit_1_2.
|
||||
Axiom proof_of_gmp_cmp_return_wit_1_3 : gmp_cmp_return_wit_1_3.
|
||||
Axiom proof_of_mpn_copyi_safety_wit_1 : mpn_copyi_safety_wit_1.
|
||||
Axiom proof_of_mpn_copyi_safety_wit_2 : mpn_copyi_safety_wit_2.
|
||||
Axiom proof_of_mpn_copyi_entail_wit_1 : mpn_copyi_entail_wit_1.
|
||||
Axiom proof_of_mpn_copyi_entail_wit_2 : mpn_copyi_entail_wit_2.
|
||||
Axiom proof_of_mpn_copyi_return_wit_1 : mpn_copyi_return_wit_1.
|
||||
Axiom proof_of_mpn_copyi_partial_solve_wit_1 : mpn_copyi_partial_solve_wit_1.
|
||||
Axiom proof_of_mpn_copyi_partial_solve_wit_2_pure : mpn_copyi_partial_solve_wit_2_pure.
|
||||
Axiom proof_of_mpn_copyi_partial_solve_wit_2 : mpn_copyi_partial_solve_wit_2.
|
||||
Axiom proof_of_mpn_copyi_partial_solve_wit_3_pure : mpn_copyi_partial_solve_wit_3_pure.
|
||||
Axiom proof_of_mpn_copyi_partial_solve_wit_3 : mpn_copyi_partial_solve_wit_3.
|
||||
Axiom proof_of_mpn_copyi_partial_solve_wit_4 : mpn_copyi_partial_solve_wit_4.
|
||||
Axiom proof_of_mpn_copyi_partial_solve_wit_5 : mpn_copyi_partial_solve_wit_5.
|
||||
Axiom proof_of_mpn_copyi_which_implies_wit_1 : mpn_copyi_which_implies_wit_1.
|
||||
Axiom proof_of_mpn_copyi_which_implies_wit_2 : mpn_copyi_which_implies_wit_2.
|
||||
Axiom proof_of_mpn_copyi_which_implies_wit_3 : mpn_copyi_which_implies_wit_3.
|
||||
|
||||
End VC_Correct.
|
6
projects/lib/gmp_goal_check.v
Normal file
6
projects/lib/gmp_goal_check.v
Normal file
@ -0,0 +1,6 @@
|
||||
From Require Import gmp_goal gmp_proof_auto gmp_proof_manual.
|
||||
|
||||
Module VC_Correctness : VC_Correct.
|
||||
Include gmp_proof_auto.
|
||||
Include gmp_proof_manual.
|
||||
End VC_Correctness.
|
65
projects/lib/gmp_proof_auto.v
Normal file
65
projects/lib/gmp_proof_auto.v
Normal file
@ -0,0 +1,65 @@
|
||||
Require Import Coq.ZArith.ZArith.
|
||||
Require Import Coq.Bool.Bool.
|
||||
Require Import Coq.Strings.String.
|
||||
Require Import Coq.Lists.List.
|
||||
Require Import Coq.Classes.RelationClasses.
|
||||
Require Import Coq.Classes.Morphisms.
|
||||
Require Import Coq.micromega.Psatz.
|
||||
Require Import Coq.Sorting.Permutation.
|
||||
From AUXLib Require Import int_auto Axioms Feq Idents List_lemma VMap.
|
||||
Require Import SetsClass.SetsClass. Import SetsNotation.
|
||||
From SimpleC.SL Require Import Mem SeparationLogic.
|
||||
From Require Import gmp_goal.
|
||||
Require Import Logic.LogicGenerator.demo932.Interface.
|
||||
Local Open Scope Z_scope.
|
||||
Local Open Scope sets.
|
||||
Local Open Scope string.
|
||||
Local Open Scope list.
|
||||
Import naive_C_Rules.
|
||||
Local Open Scope sac.
|
||||
|
||||
Lemma proof_of_gmp_abs_safety_wit_1 : gmp_abs_safety_wit_1.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_gmp_cmp_safety_wit_1 : gmp_cmp_safety_wit_1.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_gmp_cmp_safety_wit_2 : gmp_cmp_safety_wit_2.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_gmp_cmp_safety_wit_3 : gmp_cmp_safety_wit_3.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_gmp_cmp_safety_wit_4 : gmp_cmp_safety_wit_4.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_gmp_cmp_return_wit_1_1 : gmp_cmp_return_wit_1_1.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_gmp_cmp_return_wit_1_3 : gmp_cmp_return_wit_1_3.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_mpn_copyi_safety_wit_1 : mpn_copyi_safety_wit_1.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_mpn_copyi_safety_wit_2 : mpn_copyi_safety_wit_2.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_mpn_copyi_partial_solve_wit_1 : mpn_copyi_partial_solve_wit_1.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_mpn_copyi_partial_solve_wit_2_pure : mpn_copyi_partial_solve_wit_2_pure.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_mpn_copyi_partial_solve_wit_2 : mpn_copyi_partial_solve_wit_2.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_mpn_copyi_partial_solve_wit_3 : mpn_copyi_partial_solve_wit_3.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_mpn_copyi_partial_solve_wit_4 : mpn_copyi_partial_solve_wit_4.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma proof_of_mpn_copyi_partial_solve_wit_5 : mpn_copyi_partial_solve_wit_5.
|
||||
Proof. Admitted.
|
||||
|
152
projects/lib/gmp_proof_manual.v
Normal file
152
projects/lib/gmp_proof_manual.v
Normal file
@ -0,0 +1,152 @@
|
||||
Require Import Coq.ZArith.ZArith.
|
||||
Require Import Coq.Bool.Bool.
|
||||
Require Import Coq.Strings.String.
|
||||
Require Import Coq.Lists.List.
|
||||
Require Import Coq.Classes.RelationClasses.
|
||||
Require Import Coq.Classes.Morphisms.
|
||||
Require Import Coq.micromega.Psatz.
|
||||
Require Import Coq.Sorting.Permutation.
|
||||
From AUXLib Require Import int_auto Axioms Feq Idents List_lemma VMap.
|
||||
Require Import SetsClass.SetsClass. Import SetsNotation.
|
||||
From SimpleC.SL Require Import Mem SeparationLogic.
|
||||
From GmpLib Require Import gmp_goal.
|
||||
Require Import GmpLib.GmpNumber. Import Internal.
|
||||
Require Import GmpLib.GmpAux.
|
||||
Require Import Logic.LogicGenerator.demo932.Interface.
|
||||
Local Open Scope Z_scope.
|
||||
Local Open Scope sets.
|
||||
Local Open Scope string.
|
||||
Local Open Scope list.
|
||||
Import naive_C_Rules.
|
||||
Local Open Scope sac.
|
||||
|
||||
Lemma proof_of_gmp_abs_return_wit_1_1 : gmp_abs_return_wit_1_1.
|
||||
Proof. pre_process. Qed.
|
||||
|
||||
|
||||
Lemma proof_of_gmp_abs_return_wit_1_2 : gmp_abs_return_wit_1_2.
|
||||
Proof. pre_process. Qed.
|
||||
|
||||
Lemma proof_of_gmp_max_return_wit_1_1 : gmp_max_return_wit_1_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
entailer!.
|
||||
unfold Zmax.
|
||||
rewrite Z.max_r; lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_gmp_max_return_wit_1_2 : gmp_max_return_wit_1_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
entailer!.
|
||||
unfold Zmax.
|
||||
rewrite Z.max_l; lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_gmp_cmp_return_wit_1_2 : gmp_cmp_return_wit_1_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
repeat rewrite <-derivable1_orp_intros1.
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_entail_wit_1 : mpn_copyi_entail_wit_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
Exists l2 l_2.
|
||||
entailer!.
|
||||
pose proof (Zlength_nonneg l_2).
|
||||
lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_entail_wit_2 : mpn_copyi_entail_wit_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
Exists l2' l_3.
|
||||
entailer!.
|
||||
rewrite replace_Znth_app_r.
|
||||
+ rewrite Zlength_sublist0; [ | lia ].
|
||||
assert (i - i = 0). { lia. }
|
||||
rewrite H15; clear H15.
|
||||
assert (replace_Znth 0 (Znth i l_3 0) (a :: nil) = sublist i (i + 1) l_3). {
|
||||
unfold replace_Znth, Z.to_nat, replace_nth.
|
||||
rewrite (sublist_single i l_3 0); [ reflexivity | ].
|
||||
rewrite <-Zlength_correct; lia.
|
||||
}
|
||||
rewrite H15; clear H15.
|
||||
rewrite replace_Znth_nothing.
|
||||
- rewrite <-sublist_split; try lia; try reflexivity.
|
||||
rewrite <-Zlength_correct; lia.
|
||||
- pose proof (Zlength_sublist0 i l_3 ltac:(lia)).
|
||||
lia.
|
||||
+ pose proof (Zlength_sublist0 i l_3); lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_which_implies_wit_1 : mpn_copyi_which_implies_wit_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
unfold mpd_store_Z.
|
||||
Intros l.
|
||||
Exists l.
|
||||
unfold mpd_store_list.
|
||||
entailer!.
|
||||
subst.
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_which_implies_wit_2 : mpn_copyi_which_implies_wit_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
pose proof (store_uint_array_divide d cap2 l2 0).
|
||||
pose proof (Zlength_nonneg l2).
|
||||
specialize (H0 ltac:(lia) ltac:(lia)).
|
||||
destruct H0 as [H0 _].
|
||||
simpl in H0.
|
||||
entailer!.
|
||||
rewrite (sublist_nil l2 0 0) in H0; [ | lia].
|
||||
sep_apply H0.
|
||||
entailer!.
|
||||
unfold store_uint_array, store_uint_array_rec.
|
||||
unfold store_array.
|
||||
rewrite (sublist_self l2 cap2); [ | lia ].
|
||||
assert (d + 0 = d). { lia. }
|
||||
rewrite H2; clear H2.
|
||||
assert (cap2 - 0 = cap2). { lia. }
|
||||
rewrite H2; clear H2.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_which_implies_wit_3 : mpn_copyi_which_implies_wit_3.
|
||||
Proof.
|
||||
pre_process.
|
||||
destruct l'. {
|
||||
unfold store_uint_array_rec.
|
||||
simpl.
|
||||
entailer!.
|
||||
}
|
||||
pose proof (store_uint_array_rec_cons d i cap2 z l' ltac:(lia)).
|
||||
sep_apply H2.
|
||||
Exists z l'.
|
||||
entailer!.
|
||||
assert (i = 0 \/ i > 0). { lia. }
|
||||
destruct H3.
|
||||
+ subst.
|
||||
unfold store_uint_array, store_array.
|
||||
simpl.
|
||||
entailer!.
|
||||
+ pose proof (Aux.store_uarray_rec_equals_store_uarray d 0 i (sublist 0 i l) ltac:(lia)).
|
||||
destruct H4 as [_ H4].
|
||||
assert (d + sizeof(UINT) * 0 = d). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
assert (i - 0 = i). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
sep_apply H4; clear H4.
|
||||
pose proof (Aux.store_uarray_rec_equals_store_uarray d 0 (i + 1) (sublist 0 i l ++ z :: nil) ltac:(lia)).
|
||||
destruct H4 as [H4 _].
|
||||
assert (i + 1 - 0 = i + 1). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
assert (d + sizeof(UINT) * 0 = d). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
rewrite <-H4.
|
||||
sep_apply store_uint_array_rec_tail_merge; [ reflexivity | lia ].
|
||||
Qed.
|
Reference in New Issue
Block a user