feat(mpn_copyi): Proved correctness of mpn_copyi and other simple util functions.
This commit is contained in:
152
projects/lib/gmp_proof_manual.v
Normal file
152
projects/lib/gmp_proof_manual.v
Normal file
@ -0,0 +1,152 @@
|
||||
Require Import Coq.ZArith.ZArith.
|
||||
Require Import Coq.Bool.Bool.
|
||||
Require Import Coq.Strings.String.
|
||||
Require Import Coq.Lists.List.
|
||||
Require Import Coq.Classes.RelationClasses.
|
||||
Require Import Coq.Classes.Morphisms.
|
||||
Require Import Coq.micromega.Psatz.
|
||||
Require Import Coq.Sorting.Permutation.
|
||||
From AUXLib Require Import int_auto Axioms Feq Idents List_lemma VMap.
|
||||
Require Import SetsClass.SetsClass. Import SetsNotation.
|
||||
From SimpleC.SL Require Import Mem SeparationLogic.
|
||||
From GmpLib Require Import gmp_goal.
|
||||
Require Import GmpLib.GmpNumber. Import Internal.
|
||||
Require Import GmpLib.GmpAux.
|
||||
Require Import Logic.LogicGenerator.demo932.Interface.
|
||||
Local Open Scope Z_scope.
|
||||
Local Open Scope sets.
|
||||
Local Open Scope string.
|
||||
Local Open Scope list.
|
||||
Import naive_C_Rules.
|
||||
Local Open Scope sac.
|
||||
|
||||
Lemma proof_of_gmp_abs_return_wit_1_1 : gmp_abs_return_wit_1_1.
|
||||
Proof. pre_process. Qed.
|
||||
|
||||
|
||||
Lemma proof_of_gmp_abs_return_wit_1_2 : gmp_abs_return_wit_1_2.
|
||||
Proof. pre_process. Qed.
|
||||
|
||||
Lemma proof_of_gmp_max_return_wit_1_1 : gmp_max_return_wit_1_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
entailer!.
|
||||
unfold Zmax.
|
||||
rewrite Z.max_r; lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_gmp_max_return_wit_1_2 : gmp_max_return_wit_1_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
entailer!.
|
||||
unfold Zmax.
|
||||
rewrite Z.max_l; lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_gmp_cmp_return_wit_1_2 : gmp_cmp_return_wit_1_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
repeat rewrite <-derivable1_orp_intros1.
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_entail_wit_1 : mpn_copyi_entail_wit_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
Exists l2 l_2.
|
||||
entailer!.
|
||||
pose proof (Zlength_nonneg l_2).
|
||||
lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_entail_wit_2 : mpn_copyi_entail_wit_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
Exists l2' l_3.
|
||||
entailer!.
|
||||
rewrite replace_Znth_app_r.
|
||||
+ rewrite Zlength_sublist0; [ | lia ].
|
||||
assert (i - i = 0). { lia. }
|
||||
rewrite H15; clear H15.
|
||||
assert (replace_Znth 0 (Znth i l_3 0) (a :: nil) = sublist i (i + 1) l_3). {
|
||||
unfold replace_Znth, Z.to_nat, replace_nth.
|
||||
rewrite (sublist_single i l_3 0); [ reflexivity | ].
|
||||
rewrite <-Zlength_correct; lia.
|
||||
}
|
||||
rewrite H15; clear H15.
|
||||
rewrite replace_Znth_nothing.
|
||||
- rewrite <-sublist_split; try lia; try reflexivity.
|
||||
rewrite <-Zlength_correct; lia.
|
||||
- pose proof (Zlength_sublist0 i l_3 ltac:(lia)).
|
||||
lia.
|
||||
+ pose proof (Zlength_sublist0 i l_3); lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_which_implies_wit_1 : mpn_copyi_which_implies_wit_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
unfold mpd_store_Z.
|
||||
Intros l.
|
||||
Exists l.
|
||||
unfold mpd_store_list.
|
||||
entailer!.
|
||||
subst.
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_which_implies_wit_2 : mpn_copyi_which_implies_wit_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
pose proof (store_uint_array_divide d cap2 l2 0).
|
||||
pose proof (Zlength_nonneg l2).
|
||||
specialize (H0 ltac:(lia) ltac:(lia)).
|
||||
destruct H0 as [H0 _].
|
||||
simpl in H0.
|
||||
entailer!.
|
||||
rewrite (sublist_nil l2 0 0) in H0; [ | lia].
|
||||
sep_apply H0.
|
||||
entailer!.
|
||||
unfold store_uint_array, store_uint_array_rec.
|
||||
unfold store_array.
|
||||
rewrite (sublist_self l2 cap2); [ | lia ].
|
||||
assert (d + 0 = d). { lia. }
|
||||
rewrite H2; clear H2.
|
||||
assert (cap2 - 0 = cap2). { lia. }
|
||||
rewrite H2; clear H2.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_copyi_which_implies_wit_3 : mpn_copyi_which_implies_wit_3.
|
||||
Proof.
|
||||
pre_process.
|
||||
destruct l'. {
|
||||
unfold store_uint_array_rec.
|
||||
simpl.
|
||||
entailer!.
|
||||
}
|
||||
pose proof (store_uint_array_rec_cons d i cap2 z l' ltac:(lia)).
|
||||
sep_apply H2.
|
||||
Exists z l'.
|
||||
entailer!.
|
||||
assert (i = 0 \/ i > 0). { lia. }
|
||||
destruct H3.
|
||||
+ subst.
|
||||
unfold store_uint_array, store_array.
|
||||
simpl.
|
||||
entailer!.
|
||||
+ pose proof (Aux.store_uarray_rec_equals_store_uarray d 0 i (sublist 0 i l) ltac:(lia)).
|
||||
destruct H4 as [_ H4].
|
||||
assert (d + sizeof(UINT) * 0 = d). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
assert (i - 0 = i). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
sep_apply H4; clear H4.
|
||||
pose proof (Aux.store_uarray_rec_equals_store_uarray d 0 (i + 1) (sublist 0 i l ++ z :: nil) ltac:(lia)).
|
||||
destruct H4 as [H4 _].
|
||||
assert (i + 1 - 0 = i + 1). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
assert (d + sizeof(UINT) * 0 = d). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
rewrite <-H4.
|
||||
sep_apply store_uint_array_rec_tail_merge; [ reflexivity | lia ].
|
||||
Qed.
|
Reference in New Issue
Block a user