Merge remote-tracking branch 'origin/main' into mpz_sgn

This commit is contained in:
xiaoh105
2025-06-22 19:14:56 +08:00
7 changed files with 3124 additions and 91 deletions

View File

@ -33,6 +33,34 @@ Lemma Z_mod_add_uncarry: forall (a b m: Z),
a + b = (a + b) mod m.
Proof. Admitted.
Lemma Z_mod_3add_carry10: forall (a b c m: Z),
m > 0 -> 0 <= a < m -> 0 <= b < m -> 0 <= c < m ->
(a + c) mod m < c ->
((a + c) mod m + b) mod m >= b ->
a + b + c = ((a + c) mod m + b) mod m + m.
Proof. Admitted.
Lemma Z_mod_3add_carry01: forall (a b c m: Z),
m > 0 -> 0 <= a < m -> 0 <= b < m -> 0 <= c < m ->
(a + c) mod m >= c ->
((a + c) mod m + b) mod m < b ->
a + b + c = ((a + c) mod m + b) mod m + m.
Proof. Admitted.
Lemma Z_mod_3add_carry11: forall (a b c m: Z),
m > 0 -> 0 <= a < m -> 0 <= b < m -> 0 <= c < m ->
(a + c) mod m < c ->
((a + c) mod m + b) mod m < b ->
a + b + c = ((a + c) mod m + b) mod m + m * 2.
Proof. Admitted.
Lemma Z_mod_3add_carry00: forall (a b c m: Z),
m > 0 -> 0 <= a < m -> 0 <= b < m -> 0 <= c < m ->
(a + c) mod m >= c ->
((a + c) mod m + b) mod m >= b ->
a + b + c = ((a + c) mod m + b) mod m.
Proof. Admitted.
Lemma Z_of_nat_succ: forall (n: nat),
Z.of_nat (S n) = Z.of_nat n + 1.
Proof. lia. Qed.

View File

@ -89,9 +89,9 @@ Proof.
reflexivity.
Qed.
Lemma list_store_Z_compact_reverse_injection: forall l1 l2 n1 n2,
list_store_Z_compact l1 n1 ->
list_store_Z_compact l2 n2 ->
Lemma list_store_Z_reverse_injection: forall l1 l2 n1 n2,
list_store_Z l1 n1 ->
list_store_Z l2 n2 ->
n1 = n2 -> l1 = l2.
Proof. Admitted.
@ -282,6 +282,41 @@ Proof.
pose proof (Zlength_nonneg l1); lia.
Qed.
Lemma list_store_Z_list_append: forall (l: list Z) (i: Z) (val_prefix: Z) (val_full: Z),
0 <= i < Zlength l ->
list_store_Z l val_full ->
list_store_Z (sublist 0 i l) val_prefix ->
list_store_Z (sublist 0 (i+1) l) (val_prefix + Znth i l 0 * UINT_MOD ^ i).
Proof.
intros.
assert ((sublist 0 (i + 1) l) = ((sublist 0 i l) ++ ((Znth i l 0) :: nil)))%list. {
pose proof (sublist_split 0 (i+1) i l).
pose proof (sublist_single i l 0).
rewrite <-H3; try rewrite <- Zlength_correct.
apply H2; try rewrite <- Zlength_correct.
lia. lia. lia.
}
rewrite H2.
pose proof (list_store_Z_concat (sublist 0 i l) (Znth i l 0 :: nil) (val_prefix) (Znth i l 0)).
assert (Zlength (sublist 0 i l) = i). {
rewrite Zlength_sublist0.
lia.
lia.
}
rewrite H4 in H3.
apply H3.
tauto.
unfold list_store_Z.
simpl.
split.
reflexivity.
split; try tauto.
apply list_within_bound_Znth.
lia.
unfold list_store_Z in H0.
tauto.
Qed.
Lemma list_store_Z_split: forall (l1 l2: list Z) (n: Z),
list_store_Z (l1 ++ l2) n ->
list_store_Z l1 (n mod UINT_MOD ^ (Zlength l1)) /\

File diff suppressed because it is too large Load Diff

View File

@ -180,6 +180,78 @@ Proof. Admitted.
Lemma proof_of_mpn_add_1_partial_solve_wit_7 : mpn_add_1_partial_solve_wit_7.
Proof. Admitted.
Lemma proof_of_mpn_add_n_safety_wit_1 : mpn_add_n_safety_wit_1.
Proof. Admitted.
Lemma proof_of_mpn_add_n_safety_wit_2 : mpn_add_n_safety_wit_2.
Proof. Admitted.
Lemma proof_of_mpn_add_n_safety_wit_3 : mpn_add_n_safety_wit_3.
Proof. Admitted.
Lemma proof_of_mpn_add_n_safety_wit_4 : mpn_add_n_safety_wit_4.
Proof. Admitted.
Lemma proof_of_mpn_add_n_safety_wit_5 : mpn_add_n_safety_wit_5.
Proof. Admitted.
Lemma proof_of_mpn_add_n_safety_wit_6 : mpn_add_n_safety_wit_6.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_1 : mpn_add_n_partial_solve_wit_1.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_2 : mpn_add_n_partial_solve_wit_2.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_3_pure : mpn_add_n_partial_solve_wit_3_pure.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_3 : mpn_add_n_partial_solve_wit_3.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_4 : mpn_add_n_partial_solve_wit_4.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_5 : mpn_add_n_partial_solve_wit_5.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_6_pure : mpn_add_n_partial_solve_wit_6_pure.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_6 : mpn_add_n_partial_solve_wit_6.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_7_pure : mpn_add_n_partial_solve_wit_7_pure.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_7 : mpn_add_n_partial_solve_wit_7.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_8_pure : mpn_add_n_partial_solve_wit_8_pure.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_8 : mpn_add_n_partial_solve_wit_8.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_9_pure : mpn_add_n_partial_solve_wit_9_pure.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_9 : mpn_add_n_partial_solve_wit_9.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_10 : mpn_add_n_partial_solve_wit_10.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_11 : mpn_add_n_partial_solve_wit_11.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_12 : mpn_add_n_partial_solve_wit_12.
Proof. Admitted.
Lemma proof_of_mpn_add_n_partial_solve_wit_13 : mpn_add_n_partial_solve_wit_13.
Proof. Admitted.
Lemma proof_of_mpz_clear_return_wit_1_3 : mpz_clear_return_wit_1_3.
Proof. Admitted.

View File

@ -469,7 +469,7 @@ Proof.
assert (0 <= Znth i l_3 0 < 4294967296). {
assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
apply H30 in H9; try tauto.
}
assert (i < Zlength l_3). {
@ -477,7 +477,7 @@ Proof.
rewrite H17.
tauto.
}
unfold list_store_Z_compact in H9.
unfold list_store_Z in H9.
apply list_within_bound_Znth.
lia.
tauto.
@ -505,7 +505,7 @@ Proof.
lia.
+ assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
apply H28 in H9; try tauto.
}
@ -539,7 +539,7 @@ Proof.
lia.
apply list_within_bound_Znth.
lia.
unfold list_store_Z_compact in H9.
unfold list_store_Z in H9.
tauto.
- pose proof (Zlength_sublist0 i l'_2).
lia.
@ -585,7 +585,7 @@ Proof.
assert (0 <= Znth i l_3 0 < 4294967296). {
assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
apply H30 in H9; try tauto.
}
assert (i < Zlength l_3). {
@ -593,7 +593,7 @@ Proof.
rewrite H17.
tauto.
}
unfold list_store_Z_compact in H9.
unfold list_store_Z in H9.
apply list_within_bound_Znth.
lia.
tauto.
@ -621,7 +621,7 @@ Proof.
lia.
+ assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
apply H28 in H9; try tauto.
}
@ -655,7 +655,7 @@ Proof.
lia.
apply list_within_bound_Znth.
lia.
unfold list_store_Z_compact in H9.
unfold list_store_Z in H9.
tauto.
- pose proof (Zlength_sublist0 i l'_2).
lia.
@ -664,10 +664,10 @@ Qed.
Lemma proof_of_mpn_add_1_return_wit_1 : mpn_add_1_return_wit_1.
Proof.
pre_process.
unfold mpd_store_Z_compact.
unfold mpd_store_Z.
unfold mpd_store_list.
Exists val2.
pose proof (list_store_Z_compact_reverse_injection l l_2 val val).
pose proof (list_store_Z_reverse_injection l l_2 val val).
apply H19 in H2; try tauto.
rewrite <-H2 in H10.
assert (i = n_pre) by lia.
@ -675,32 +675,33 @@ Proof.
rewrite <- H10 in H4.
rewrite (sublist_self l (Zlength l)) in H4; try tauto.
rewrite <-H2 in H12.
assert (list_store_Z l val). { apply list_store_Z_compact_to_normal. tauto. }
pose proof (list_store_Z_injection l l val1 val).
apply H22 in H4; try tauto.
apply H21 in H4; try tauto.
rewrite H4 in H6.
entailer!.
Exists l.
entailer!.
entailer!; try rewrite H20; try tauto.
- rewrite H10.
entailer!.
unfold mpd_store_Z.
unfold mpd_store_list.
Exists l'.
rewrite H7.
subst i.
entailer!.
rewrite H20.
entailer!.
apply store_uint_array_rec_def2undef.
- rewrite <- H20. tauto.
rewrite H10.
entailer!.
unfold mpd_store_Z.
unfold mpd_store_list.
Exists l'.
rewrite H7.
subst i.
entailer!.
rewrite H20.
entailer!.
apply store_uint_array_rec_def2undef.
assert (Zlength l' = n_pre) by lia.
rewrite <- H7.
tauto.
Qed.
Lemma proof_of_mpn_add_1_which_implies_wit_1 : mpn_add_1_which_implies_wit_1.
Proof.
pre_process.
unfold mpd_store_Z_compact.
unfold mpd_store_Z.
Intros l.
Exists l.
unfold mpd_store_list.
@ -807,6 +808,605 @@ Proof.
lia.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_1 : mpn_add_n_entail_wit_1.
Proof.
pre_process.
Exists l_r nil 0 0 0.
Exists l_b_2 l_a_2.
entailer!.
- unfold list_store_Z.
simpl.
tauto.
- rewrite sublist_nil; try lia; try tauto.
unfold list_store_Z.
simpl.
tauto.
- rewrite sublist_nil; try lia; try tauto.
unfold list_store_Z.
simpl.
tauto.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_2 : mpn_add_n_entail_wit_2.
Proof.
pre_process.
prop_apply (store_uint_range &("cy") cy).
entailer!.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_3_1 : mpn_add_n_entail_wit_3_1.
Proof.
pre_process.
rewrite replace_Znth_app_r.
assert (l_a_3 = l_a_2). {
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
specialize (H37 H13 H28).
apply H37.
reflexivity.
}
subst l_a_3.
assert (l_b_3 = l_b_2). {
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
specialize (H37 H14 H24).
apply H37.
reflexivity.
}
subst l_b_3.
- Exists l_r_suffix'.
rewrite H29.
rewrite H18.
assert (i - i = 0) by lia.
rewrite H37; clear H37.
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
rewrite replace_Znth_nothing; try lia.
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
unfold replace_Znth.
simpl.
reflexivity.
}
rewrite H37; clear H37.
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
Exists l_b_2 l_a_2.
entailer!.
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
{
lia.
}
rewrite H37; clear H37.
rewrite <- H19.
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2 + UINT_MOD). {
unfold unsigned_last_nbits in H4, H3.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H37 in H4, H3; clear H37.
apply Z_mod_3add_carry10; try lia; try tauto;
try unfold list_store_Z in H13, H14;
try apply list_within_bound_Znth;
try lia;
try tauto.
}
assert ( partial_result_2 * 4294967296 ^ i + (1 + 0) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
assert (Zlength (partial_result_2 :: nil) = 1). {
unfold Zlength.
simpl.
reflexivity.
}
rewrite H38 in H37; clear H38.
rewrite H18 in H37.
apply H37.
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
rewrite H18 in H37.
apply H37.
tauto.
unfold list_store_Z.
simpl.
split.
reflexivity.
split.
unfold partial_result_2.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H38; clear H38.
apply Z.mod_pos_bound.
lia.
tauto.
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
apply H37.
lia.
tauto.
tauto.
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
apply H37.
lia.
tauto.
tauto.
- pose proof (Zlength_sublist0 i l_r_prefix_2).
lia.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_3_2 : mpn_add_n_entail_wit_3_2.
Proof.
pre_process.
rewrite replace_Znth_app_r.
assert (l_a_3 = l_a_2). {
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
specialize (H37 H13 H28).
apply H37.
reflexivity.
}
subst l_a_3.
assert (l_b_3 = l_b_2). {
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
specialize (H37 H14 H24).
apply H37.
reflexivity.
}
subst l_b_3.
- Exists l_r_suffix'.
rewrite H29.
rewrite H18.
assert (i - i = 0) by lia.
rewrite H37; clear H37.
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
rewrite replace_Znth_nothing; try lia.
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
unfold replace_Znth.
simpl.
reflexivity.
}
rewrite H37; clear H37.
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
Exists l_b_2 l_a_2.
entailer!.
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
{
lia.
}
rewrite H37; clear H37.
rewrite <- H19.
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2 + UINT_MOD * 2). {
unfold unsigned_last_nbits in H4, H3.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H37 in H4, H3; clear H37.
apply Z_mod_3add_carry11; try lia; try tauto;
try unfold list_store_Z in H13, H14;
try apply list_within_bound_Znth;
try lia;
try tauto.
}
assert ( partial_result_2 * 4294967296 ^ i + (1 + 1) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
assert (Zlength (partial_result_2 :: nil) = 1). {
unfold Zlength.
simpl.
reflexivity.
}
rewrite H38 in H37; clear H38.
rewrite H18 in H37.
apply H37.
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
rewrite H18 in H37.
apply H37.
tauto.
unfold list_store_Z.
simpl.
split.
reflexivity.
split.
unfold partial_result_2.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H38; clear H38.
apply Z.mod_pos_bound.
lia.
tauto.
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
apply H37.
lia.
tauto.
tauto.
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
apply H37.
lia.
tauto.
tauto.
- pose proof (Zlength_sublist0 i l_r_prefix_2).
lia.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_3_3 : mpn_add_n_entail_wit_3_3.
Proof.
pre_process.
rewrite replace_Znth_app_r.
assert (l_a_3 = l_a_2). {
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
specialize (H37 H13 H28).
apply H37.
reflexivity.
}
subst l_a_3.
assert (l_b_3 = l_b_2). {
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
specialize (H37 H14 H24).
apply H37.
reflexivity.
}
subst l_b_3.
- Exists l_r_suffix'.
rewrite H29.
rewrite H18.
assert (i - i = 0) by lia.
rewrite H37; clear H37.
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
rewrite replace_Znth_nothing; try lia.
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
unfold replace_Znth.
simpl.
reflexivity.
}
rewrite H37; clear H37.
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
Exists l_b_2 l_a_2.
entailer!.
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
{
lia.
}
rewrite H37; clear H37.
rewrite <- H19.
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2). {
unfold unsigned_last_nbits in H4, H3.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H37 in H4, H3; clear H37.
apply Z_mod_3add_carry00; try lia; try tauto;
try unfold list_store_Z in H13, H14;
try apply list_within_bound_Znth;
try lia;
try tauto.
}
assert ( partial_result_2 * 4294967296 ^ i + (0 + 0) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
assert (Zlength (partial_result_2 :: nil) = 1). {
unfold Zlength.
simpl.
reflexivity.
}
rewrite H38 in H37; clear H38.
rewrite H18 in H37.
apply H37.
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
rewrite H18 in H37.
apply H37.
tauto.
unfold list_store_Z.
simpl.
split.
reflexivity.
split.
unfold partial_result_2.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H38; clear H38.
apply Z.mod_pos_bound.
lia.
tauto.
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
apply H37.
lia.
tauto.
tauto.
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
apply H37.
lia.
tauto.
tauto.
- pose proof (Zlength_sublist0 i l_r_prefix_2).
lia.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_3_4 : mpn_add_n_entail_wit_3_4.
Proof.
pre_process.
rewrite replace_Znth_app_r.
assert (l_a_3 = l_a_2). {
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
specialize (H37 H13 H28).
apply H37.
reflexivity.
}
subst l_a_3.
assert (l_b_3 = l_b_2). {
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
specialize (H37 H14 H24).
apply H37.
reflexivity.
}
subst l_b_3.
- Exists l_r_suffix'.
rewrite H29.
rewrite H18.
assert (i - i = 0) by lia.
rewrite H37; clear H37.
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
rewrite replace_Znth_nothing; try lia.
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
unfold replace_Znth.
simpl.
reflexivity.
}
rewrite H37; clear H37.
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
Exists l_b_2 l_a_2.
entailer!.
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
{
lia.
}
rewrite H37; clear H37.
rewrite <- H19.
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2 + UINT_MOD). {
unfold unsigned_last_nbits in H4, H3.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H37 in H4, H3; clear H37.
apply Z_mod_3add_carry01; try lia; try tauto;
try unfold list_store_Z in H13, H14;
try apply list_within_bound_Znth;
try lia;
try tauto.
}
assert ( partial_result_2 * 4294967296 ^ i + (0 + 1) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
assert (Zlength (partial_result_2 :: nil) = 1). {
unfold Zlength.
simpl.
reflexivity.
}
rewrite H38 in H37; clear H38.
rewrite H18 in H37.
apply H37.
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
rewrite H18 in H37.
apply H37.
tauto.
unfold list_store_Z.
simpl.
split.
reflexivity.
split.
unfold partial_result_2.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H38; clear H38.
apply Z.mod_pos_bound.
lia.
tauto.
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
apply H37.
lia.
tauto.
tauto.
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
apply H37.
lia.
tauto.
tauto.
- pose proof (Zlength_sublist0 i l_r_prefix_2).
lia.
Qed.
Lemma proof_of_mpn_add_n_return_wit_1 : mpn_add_n_return_wit_1.
Proof.
pre_process.
assert (l_a_2 = l_a). {
pose proof (list_store_Z_reverse_injection l_a_2 l_a val_a val_a).
specialize (H29 H20 H5).
apply H29.
reflexivity.
}
subst l_a_2.
assert (l_b_2 = l_b). {
pose proof (list_store_Z_reverse_injection l_b_2 l_b val_b val_b).
specialize (H29 H16 H6).
apply H29.
reflexivity.
}
subst l_b_2.
assert (i = n_pre) by lia.
Exists val_r_prefix.
unfold mpd_store_Z.
unfold mpd_store_list.
Exists l_a.
Exists l_b.
entailer!.
rewrite H14.
rewrite H18.
entailer!.
unfold mpd_store_Z.
Exists l_r_prefix.
rewrite H29 in *.
entailer!.
unfold mpd_store_list.
entailer!.
rewrite H10.
entailer!.
apply store_uint_array_rec_def2undef.
rewrite <- H29.
assert (val_a_prefix = val_a). {
rewrite <-H18 in H7.
rewrite sublist_self in H7.
unfold list_store_Z in H5.
unfold list_store_Z in H7.
lia.
reflexivity.
}
rewrite <- H30; clear H30.
assert (val_b_prefix = val_b). {
rewrite <-H14 in H8.
rewrite sublist_self in H8.
unfold list_store_Z in H6.
unfold list_store_Z in H8.
lia.
reflexivity.
}
rewrite <- H30; clear H30.
rewrite H29.
tauto.
Qed.
Lemma proof_of_mpn_add_n_which_implies_wit_1 : mpn_add_n_which_implies_wit_1.
Proof.
pre_process.
unfold mpd_store_Z.
Intros l.
Exists l.
unfold mpd_store_list.
entailer!.
subst n_pre.
entailer!.
Qed.
Lemma proof_of_mpn_add_n_which_implies_wit_2 : mpn_add_n_which_implies_wit_2.
Proof.
pre_process.
unfold mpd_store_Z.
Intros l.
Exists l.
unfold mpd_store_list.
entailer!.
subst n_pre.
entailer!.
Qed.
Lemma proof_of_mpn_add_n_which_implies_wit_3 : mpn_add_n_which_implies_wit_3.
Proof.
pre_process.
pose proof (store_uint_array_divide rp_pre cap_r l_r 0).
pose proof (Zlength_nonneg l_r).
specialize (H0 ltac:(lia) ltac:(lia)).
destruct H0 as [H0 _].
simpl in H0.
entailer!.
rewrite (sublist_nil l_r 0 0) in H0; [ | lia].
sep_apply H0.
entailer!.
unfold store_uint_array, store_uint_array_rec.
unfold store_array.
rewrite (sublist_self l_r cap_r); [ | lia ].
assert (rp_pre + 0 = rp_pre). { lia. }
rewrite H2; clear H2.
assert (cap_r - 0 = cap_r). { lia. }
rewrite H2; clear H2.
reflexivity.
Qed.
Lemma proof_of_mpn_add_n_which_implies_wit_4 : mpn_add_n_which_implies_wit_4.
Proof.
pre_process.
destruct l_r_suffix. {
unfold store_uint_array_rec.
simpl.
entailer!.
}
pose proof (store_uint_array_rec_cons rp_pre i cap_r z l_r_suffix ltac:(lia)).
sep_apply H2.
Exists z l_r_suffix.
entailer!.
assert (i = 0 \/ i > 0). { lia. }
destruct H3.
+ subst.
simpl.
entailer!.
simpl in H2.
assert (rp_pre + 0 = rp_pre). { lia. }
rewrite H3.
rewrite H3 in H2.
clear H3.
pose proof (store_uint_array_empty rp_pre l_r_prefix).
sep_apply H3.
rewrite logic_equiv_andp_comm.
rewrite logic_equiv_coq_prop_andp_sepcon.
Intros.
subst l_r_prefix.
rewrite app_nil_l.
unfold store_uint_array.
unfold store_array.
unfold store_array_rec.
simpl.
assert (rp_pre + 0 = rp_pre). { lia. }
rewrite H4; clear H4.
entailer!.
+ pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 i (sublist 0 i l_r_prefix) ltac:(lia)).
destruct H4 as [_ H4].
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
rewrite H5 in H4; clear H5.
assert (i - 0 = i). { lia. }
rewrite H5 in H4; clear H5.
pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 (i + 1) (sublist 0 i l_r_prefix ++ z :: nil) ltac:(lia)).
destruct H5 as [H5 _].
assert (i + 1 - 0 = i + 1). { lia. }
rewrite H6 in H5; clear H6.
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
rewrite H6 in H5; clear H6.
pose proof (uint_array_rec_to_uint_array rp_pre 0 i l_r_prefix).
specialize (H6 H).
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
rewrite H7 in H6; clear H7.
assert ((i-0) = i) by lia.
rewrite H7 in H6; clear H7.
destruct H6 as [_ H6].
sep_apply H6.
(* pose proof (uint_array_rec_to_uint_array rp_pre 0 (i+1) (l' ++ z :: nil)).
assert (H_i_plus_1 : 0 <= i + 1) by lia.
specialize (H7 H_i_plus_1); clear H_i_plus_1.
destruct H7 as [H7 _].
assert (i + 1 - 0 = i + 1) by lia.
rewrite H8 in H7; clear H8.
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
rewrite H8 in H7; clear H8.
rewrite <-H7.
clear H6.
clear H7. *)
pose proof (store_uint_array_divide_rec rp_pre (i+1) (l_r_prefix ++ z :: nil) i).
assert (H_tmp: 0 <= i <= i+1) by lia.
specialize (H7 H_tmp); clear H_tmp.
rewrite <- store_uint_array_single.
sep_apply store_uint_array_rec_divide_rev.
entailer!.
lia.
Qed.
Lemma proof_of_mpz_clear_return_wit_1_1 : mpz_clear_return_wit_1_1.
Proof.
pre_process.

View File

@ -228,7 +228,7 @@ mpn_add_1 (unsigned int *rp, unsigned int *ap, int n, unsigned int b)
/*@
With val l2 cap1 cap2
Require
mpd_store_Z_compact(ap, val, n, cap1) *
mpd_store_Z(ap, val, n, cap1) *
store_uint_array(rp, cap2, l2) &&
Zlength(l2) == cap2 &&
cap2 >= n &&
@ -237,13 +237,13 @@ mpn_add_1 (unsigned int *rp, unsigned int *ap, int n, unsigned int b)
n > 0 && n <= cap1
Ensure
exists val',
mpd_store_Z_compact(ap@pre, val, n@pre, cap1) *
mpd_store_Z(ap@pre, val, n@pre, cap1) *
mpd_store_Z(rp@pre, val', n@pre, cap2) &&
(val' + __return * Z::pow(UINT_MOD, n@pre) == val + b@pre)
*/
{
/*@
mpd_store_Z_compact(ap@pre, val, n@pre, cap1)
mpd_store_Z(ap@pre, val, n@pre, cap1)
which implies
exists l,
n@pre <= cap1 &&
@ -251,7 +251,7 @@ mpn_add_1 (unsigned int *rp, unsigned int *ap, int n, unsigned int b)
cap1 <= 100000000 &&
store_uint_array(ap@pre, n@pre, l) *
store_undef_uint_array_rec(ap@pre, n@pre, cap1) &&
list_store_Z_compact(l, val)
list_store_Z(l, val)
*/
int i;
//assert (n > 0);
@ -278,7 +278,7 @@ mpn_add_1 (unsigned int *rp, unsigned int *ap, int n, unsigned int b)
/*@Inv
exists l l' l'' val1 val2,
0 <= i && i <= n@pre &&
list_store_Z_compact(l, val) && n@pre <= cap1 &&
list_store_Z(l, val) && n@pre <= cap1 &&
store_uint_array(ap@pre, n@pre, l) *
store_undef_uint_array_rec(ap@pre, n@pre, cap1) &&
list_store_Z(sublist(0, i, l), val1) &&
@ -313,24 +313,104 @@ mpn_add_1 (unsigned int *rp, unsigned int *ap, int n, unsigned int b)
}
/* 位数相同的多精度数ap 加上多精度数bp返回最后产生的进位 */
/*unsigned int
unsigned int
mpn_add_n (unsigned int *rp, unsigned int *ap, unsigned int *bp, int n)
/*@
With cap_a cap_b cap_r val_a val_b l_r
Require
mpd_store_Z(ap, val_a, n, cap_a) *
mpd_store_Z(bp, val_b, n, cap_b) *
store_uint_array(rp, cap_r, l_r) &&
Zlength(l_r) == cap_r &&
cap_a <= 100000000 &&
cap_b <= 100000000 &&
cap_r <= 100000000 &&
n > 0 && n <= cap_a && n <= cap_b && n <= cap_r
Ensure
exists val_r_out,
mpd_store_Z(ap@pre, val_a, n@pre, cap_a) *
mpd_store_Z(bp@pre, val_b, n@pre, cap_b) *
mpd_store_Z(rp@pre, val_r_out, n@pre, cap_r) &&
(val_r_out + __return * Z::pow(UINT_MOD, n@pre) == val_a + val_b)
*/
{
/*@
mpd_store_Z(ap@pre, val_a, n@pre, cap_a)
which implies
exists l_a,
n@pre <= cap_a &&
Zlength(l_a) == n@pre &&
cap_a <= 100000000 &&
store_uint_array(ap@pre, n@pre, l_a) *
store_undef_uint_array_rec(ap@pre, n@pre, cap_a) &&
list_store_Z(l_a, val_a)
*/
/*@
mpd_store_Z(bp@pre, val_b, n@pre, cap_b)
which implies
exists l_b,
n@pre <= cap_b &&
Zlength(l_b) == n@pre &&
cap_b <= 100000000 &&
store_uint_array(bp@pre, n@pre, l_b) *
store_undef_uint_array_rec(bp@pre, n@pre, cap_b) &&
list_store_Z(l_b, val_b)
*/
int i;
unsigned int cy;
for (i = 0, cy = 0; i < n; i++)
/*@
store_uint_array(rp@pre, cap_r, l_r) && Zlength(l_r) == cap_r
which implies
store_uint_array_rec(rp@pre, 0, cap_r, l_r) * store_uint_array(rp@pre, 0, nil) &&
Zlength(l_r) == cap_r
*/
i = 0;
cy = 0;
/*@Inv
exists l_a l_b l_r_prefix l_r_suffix val_a_prefix val_b_prefix val_r_prefix,
0 <= i && i <= n@pre && n@pre <= cap_a && n@pre <= cap_b && n@pre <= cap_r &&
list_store_Z(l_a, val_a) &&
list_store_Z(l_b, val_b) &&
list_store_Z(sublist(0, i, l_a), val_a_prefix) &&
list_store_Z(sublist(0, i, l_b), val_b_prefix) &&
list_store_Z(l_r_prefix, val_r_prefix) &&
Zlength(l_r_prefix) == i &&
(val_r_prefix + cy * Z::pow(UINT_MOD, i) == val_a_prefix + val_b_prefix) &&
store_uint_array(ap@pre, n@pre, l_a) *
store_undef_uint_array_rec(ap@pre, n@pre, cap_a) *
store_uint_array(bp@pre, n@pre, l_b) *
store_undef_uint_array_rec(bp@pre, n@pre, cap_b) *
store_uint_array(rp@pre, i, l_r_prefix) *
store_uint_array_rec(rp@pre, i, cap_r, l_r_suffix)
*/
while (i < n)
{
/*@
Given l_a l_b l_r_prefix l_r_suffix val_a_prefix val_b_prefix val_r_prefix
*/
/*@ 0 <= cy && cy <= UINT_MAX by local */
unsigned int a, b, r;
a = ap[i]; b = bp[i];
r = a + cy;
cy = (r < cy);
r += b;
cy += (r < b);
/*@
0 <= i && i < n@pre && n@pre <= cap_r &&
store_uint_array(rp@pre, i, l_r_prefix) *
store_uint_array_rec(rp@pre, i, cap_r, l_r_suffix)
which implies
exists a l_r_suffix',
l_r_suffix == cons(a, l_r_suffix') && 0 <= i && i < n@pre && n@pre <= cap_r &&
store_uint_array_rec(rp@pre, i+1, cap_r, l_r_suffix') *
store_uint_array(rp@pre, i+1, app(l_r_prefix, cons(a, nil)))
*/
rp[i] = r;
++i;
}
return cy;
}*/
}
/*不同位数的多精度数相加,返回最后的进位*/
/*unsigned int

View File

@ -84,7 +84,7 @@ void mpn_copyi (unsigned int *d, unsigned int *s, int n);
int mpn_cmp (unsigned int *ap, unsigned int *bp, int n);
unsigned int mpn_add_1 (unsigned int *rp, unsigned int *ap, int n, unsigned int b);
unsigned int mpn_add_n (unsigned int *, unsigned int *, unsigned int *, int);
unsigned int mpn_add_n (unsigned int *rp, unsigned int *ap, unsigned int *bp, int n);
unsigned int mpn_add (unsigned int *, unsigned int *, int, unsigned int *, int);
unsigned int mpn_sub_1 (unsigned int *, unsigned int *, int, unsigned int);