Merge remote-tracking branch 'origin/main' into mpz_sgn
This commit is contained in:
@ -469,7 +469,7 @@ Proof.
|
||||
assert (0 <= Znth i l_3 0 < 4294967296). {
|
||||
assert (l_2=l_3).
|
||||
{
|
||||
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
|
||||
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
|
||||
apply H30 in H9; try tauto.
|
||||
}
|
||||
assert (i < Zlength l_3). {
|
||||
@ -477,7 +477,7 @@ Proof.
|
||||
rewrite H17.
|
||||
tauto.
|
||||
}
|
||||
unfold list_store_Z_compact in H9.
|
||||
unfold list_store_Z in H9.
|
||||
apply list_within_bound_Znth.
|
||||
lia.
|
||||
tauto.
|
||||
@ -505,7 +505,7 @@ Proof.
|
||||
lia.
|
||||
+ assert (l_2=l_3).
|
||||
{
|
||||
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
|
||||
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
|
||||
apply H28 in H9; try tauto.
|
||||
}
|
||||
|
||||
@ -539,7 +539,7 @@ Proof.
|
||||
lia.
|
||||
apply list_within_bound_Znth.
|
||||
lia.
|
||||
unfold list_store_Z_compact in H9.
|
||||
unfold list_store_Z in H9.
|
||||
tauto.
|
||||
- pose proof (Zlength_sublist0 i l'_2).
|
||||
lia.
|
||||
@ -585,7 +585,7 @@ Proof.
|
||||
assert (0 <= Znth i l_3 0 < 4294967296). {
|
||||
assert (l_2=l_3).
|
||||
{
|
||||
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
|
||||
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
|
||||
apply H30 in H9; try tauto.
|
||||
}
|
||||
assert (i < Zlength l_3). {
|
||||
@ -593,7 +593,7 @@ Proof.
|
||||
rewrite H17.
|
||||
tauto.
|
||||
}
|
||||
unfold list_store_Z_compact in H9.
|
||||
unfold list_store_Z in H9.
|
||||
apply list_within_bound_Znth.
|
||||
lia.
|
||||
tauto.
|
||||
@ -621,7 +621,7 @@ Proof.
|
||||
lia.
|
||||
+ assert (l_2=l_3).
|
||||
{
|
||||
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
|
||||
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
|
||||
apply H28 in H9; try tauto.
|
||||
}
|
||||
|
||||
@ -655,7 +655,7 @@ Proof.
|
||||
lia.
|
||||
apply list_within_bound_Znth.
|
||||
lia.
|
||||
unfold list_store_Z_compact in H9.
|
||||
unfold list_store_Z in H9.
|
||||
tauto.
|
||||
- pose proof (Zlength_sublist0 i l'_2).
|
||||
lia.
|
||||
@ -664,10 +664,10 @@ Qed.
|
||||
Lemma proof_of_mpn_add_1_return_wit_1 : mpn_add_1_return_wit_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
unfold mpd_store_Z_compact.
|
||||
unfold mpd_store_Z.
|
||||
unfold mpd_store_list.
|
||||
Exists val2.
|
||||
pose proof (list_store_Z_compact_reverse_injection l l_2 val val).
|
||||
pose proof (list_store_Z_reverse_injection l l_2 val val).
|
||||
apply H19 in H2; try tauto.
|
||||
rewrite <-H2 in H10.
|
||||
assert (i = n_pre) by lia.
|
||||
@ -675,32 +675,33 @@ Proof.
|
||||
rewrite <- H10 in H4.
|
||||
rewrite (sublist_self l (Zlength l)) in H4; try tauto.
|
||||
rewrite <-H2 in H12.
|
||||
assert (list_store_Z l val). { apply list_store_Z_compact_to_normal. tauto. }
|
||||
pose proof (list_store_Z_injection l l val1 val).
|
||||
apply H22 in H4; try tauto.
|
||||
apply H21 in H4; try tauto.
|
||||
rewrite H4 in H6.
|
||||
entailer!.
|
||||
Exists l.
|
||||
entailer!.
|
||||
entailer!; try rewrite H20; try tauto.
|
||||
- rewrite H10.
|
||||
entailer!.
|
||||
unfold mpd_store_Z.
|
||||
unfold mpd_store_list.
|
||||
Exists l'.
|
||||
rewrite H7.
|
||||
subst i.
|
||||
entailer!.
|
||||
rewrite H20.
|
||||
entailer!.
|
||||
apply store_uint_array_rec_def2undef.
|
||||
- rewrite <- H20. tauto.
|
||||
rewrite H10.
|
||||
entailer!.
|
||||
unfold mpd_store_Z.
|
||||
unfold mpd_store_list.
|
||||
Exists l'.
|
||||
rewrite H7.
|
||||
subst i.
|
||||
entailer!.
|
||||
rewrite H20.
|
||||
entailer!.
|
||||
apply store_uint_array_rec_def2undef.
|
||||
assert (Zlength l' = n_pre) by lia.
|
||||
rewrite <- H7.
|
||||
tauto.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_1_which_implies_wit_1 : mpn_add_1_which_implies_wit_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
unfold mpd_store_Z_compact.
|
||||
unfold mpd_store_Z.
|
||||
Intros l.
|
||||
Exists l.
|
||||
unfold mpd_store_list.
|
||||
@ -807,6 +808,605 @@ Proof.
|
||||
lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_entail_wit_1 : mpn_add_n_entail_wit_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
Exists l_r nil 0 0 0.
|
||||
Exists l_b_2 l_a_2.
|
||||
entailer!.
|
||||
- unfold list_store_Z.
|
||||
simpl.
|
||||
tauto.
|
||||
- rewrite sublist_nil; try lia; try tauto.
|
||||
unfold list_store_Z.
|
||||
simpl.
|
||||
tauto.
|
||||
- rewrite sublist_nil; try lia; try tauto.
|
||||
unfold list_store_Z.
|
||||
simpl.
|
||||
tauto.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_entail_wit_2 : mpn_add_n_entail_wit_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
prop_apply (store_uint_range &("cy") cy).
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_entail_wit_3_1 : mpn_add_n_entail_wit_3_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
rewrite replace_Znth_app_r.
|
||||
assert (l_a_3 = l_a_2). {
|
||||
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
|
||||
specialize (H37 H13 H28).
|
||||
apply H37.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_a_3.
|
||||
assert (l_b_3 = l_b_2). {
|
||||
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
|
||||
specialize (H37 H14 H24).
|
||||
apply H37.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_b_3.
|
||||
- Exists l_r_suffix'.
|
||||
rewrite H29.
|
||||
rewrite H18.
|
||||
assert (i - i = 0) by lia.
|
||||
rewrite H37; clear H37.
|
||||
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
|
||||
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
|
||||
rewrite replace_Znth_nothing; try lia.
|
||||
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
|
||||
unfold replace_Znth.
|
||||
simpl.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite H37; clear H37.
|
||||
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
|
||||
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
|
||||
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
|
||||
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
|
||||
Exists l_b_2 l_a_2.
|
||||
entailer!.
|
||||
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
|
||||
{
|
||||
lia.
|
||||
}
|
||||
rewrite H37; clear H37.
|
||||
rewrite <- H19.
|
||||
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2 + UINT_MOD). {
|
||||
unfold unsigned_last_nbits in H4, H3.
|
||||
assert (2 ^ 32 = 4294967296). { nia. }
|
||||
rewrite H37 in H4, H3; clear H37.
|
||||
apply Z_mod_3add_carry10; try lia; try tauto;
|
||||
try unfold list_store_Z in H13, H14;
|
||||
try apply list_within_bound_Znth;
|
||||
try lia;
|
||||
try tauto.
|
||||
}
|
||||
assert ( partial_result_2 * 4294967296 ^ i + (1 + 0) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
|
||||
rewrite <- Z.mul_add_distr_r.
|
||||
rewrite (Zpow_add_1 4294967296 i); try lia.
|
||||
}
|
||||
lia.
|
||||
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
|
||||
assert (Zlength (partial_result_2 :: nil) = 1). {
|
||||
unfold Zlength.
|
||||
simpl.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite H38 in H37; clear H38.
|
||||
rewrite H18 in H37.
|
||||
apply H37.
|
||||
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
|
||||
rewrite H18 in H37.
|
||||
apply H37.
|
||||
tauto.
|
||||
unfold list_store_Z.
|
||||
simpl.
|
||||
split.
|
||||
reflexivity.
|
||||
split.
|
||||
unfold partial_result_2.
|
||||
unfold unsigned_last_nbits.
|
||||
assert (2 ^ 32 = 4294967296). { nia. }
|
||||
rewrite H38; clear H38.
|
||||
apply Z.mod_pos_bound.
|
||||
lia.
|
||||
tauto.
|
||||
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
|
||||
apply H37.
|
||||
lia.
|
||||
tauto.
|
||||
tauto.
|
||||
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
|
||||
apply H37.
|
||||
lia.
|
||||
tauto.
|
||||
tauto.
|
||||
- pose proof (Zlength_sublist0 i l_r_prefix_2).
|
||||
lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_entail_wit_3_2 : mpn_add_n_entail_wit_3_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
rewrite replace_Znth_app_r.
|
||||
assert (l_a_3 = l_a_2). {
|
||||
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
|
||||
specialize (H37 H13 H28).
|
||||
apply H37.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_a_3.
|
||||
assert (l_b_3 = l_b_2). {
|
||||
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
|
||||
specialize (H37 H14 H24).
|
||||
apply H37.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_b_3.
|
||||
- Exists l_r_suffix'.
|
||||
rewrite H29.
|
||||
rewrite H18.
|
||||
assert (i - i = 0) by lia.
|
||||
rewrite H37; clear H37.
|
||||
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
|
||||
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
|
||||
rewrite replace_Znth_nothing; try lia.
|
||||
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
|
||||
unfold replace_Znth.
|
||||
simpl.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite H37; clear H37.
|
||||
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
|
||||
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
|
||||
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
|
||||
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
|
||||
Exists l_b_2 l_a_2.
|
||||
entailer!.
|
||||
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
|
||||
{
|
||||
lia.
|
||||
}
|
||||
rewrite H37; clear H37.
|
||||
rewrite <- H19.
|
||||
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2 + UINT_MOD * 2). {
|
||||
unfold unsigned_last_nbits in H4, H3.
|
||||
assert (2 ^ 32 = 4294967296). { nia. }
|
||||
rewrite H37 in H4, H3; clear H37.
|
||||
apply Z_mod_3add_carry11; try lia; try tauto;
|
||||
try unfold list_store_Z in H13, H14;
|
||||
try apply list_within_bound_Znth;
|
||||
try lia;
|
||||
try tauto.
|
||||
}
|
||||
assert ( partial_result_2 * 4294967296 ^ i + (1 + 1) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
|
||||
rewrite <- Z.mul_add_distr_r.
|
||||
rewrite (Zpow_add_1 4294967296 i); try lia.
|
||||
}
|
||||
lia.
|
||||
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
|
||||
assert (Zlength (partial_result_2 :: nil) = 1). {
|
||||
unfold Zlength.
|
||||
simpl.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite H38 in H37; clear H38.
|
||||
rewrite H18 in H37.
|
||||
apply H37.
|
||||
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
|
||||
rewrite H18 in H37.
|
||||
apply H37.
|
||||
tauto.
|
||||
unfold list_store_Z.
|
||||
simpl.
|
||||
split.
|
||||
reflexivity.
|
||||
split.
|
||||
unfold partial_result_2.
|
||||
unfold unsigned_last_nbits.
|
||||
assert (2 ^ 32 = 4294967296). { nia. }
|
||||
rewrite H38; clear H38.
|
||||
apply Z.mod_pos_bound.
|
||||
lia.
|
||||
tauto.
|
||||
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
|
||||
apply H37.
|
||||
lia.
|
||||
tauto.
|
||||
tauto.
|
||||
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
|
||||
apply H37.
|
||||
lia.
|
||||
tauto.
|
||||
tauto.
|
||||
- pose proof (Zlength_sublist0 i l_r_prefix_2).
|
||||
lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_entail_wit_3_3 : mpn_add_n_entail_wit_3_3.
|
||||
Proof.
|
||||
pre_process.
|
||||
rewrite replace_Znth_app_r.
|
||||
assert (l_a_3 = l_a_2). {
|
||||
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
|
||||
specialize (H37 H13 H28).
|
||||
apply H37.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_a_3.
|
||||
assert (l_b_3 = l_b_2). {
|
||||
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
|
||||
specialize (H37 H14 H24).
|
||||
apply H37.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_b_3.
|
||||
- Exists l_r_suffix'.
|
||||
rewrite H29.
|
||||
rewrite H18.
|
||||
assert (i - i = 0) by lia.
|
||||
rewrite H37; clear H37.
|
||||
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
|
||||
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
|
||||
rewrite replace_Znth_nothing; try lia.
|
||||
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
|
||||
unfold replace_Znth.
|
||||
simpl.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite H37; clear H37.
|
||||
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
|
||||
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
|
||||
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
|
||||
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
|
||||
Exists l_b_2 l_a_2.
|
||||
entailer!.
|
||||
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
|
||||
{
|
||||
lia.
|
||||
}
|
||||
rewrite H37; clear H37.
|
||||
rewrite <- H19.
|
||||
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2). {
|
||||
unfold unsigned_last_nbits in H4, H3.
|
||||
assert (2 ^ 32 = 4294967296). { nia. }
|
||||
rewrite H37 in H4, H3; clear H37.
|
||||
apply Z_mod_3add_carry00; try lia; try tauto;
|
||||
try unfold list_store_Z in H13, H14;
|
||||
try apply list_within_bound_Znth;
|
||||
try lia;
|
||||
try tauto.
|
||||
}
|
||||
assert ( partial_result_2 * 4294967296 ^ i + (0 + 0) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
|
||||
rewrite <- Z.mul_add_distr_r.
|
||||
rewrite (Zpow_add_1 4294967296 i); try lia.
|
||||
}
|
||||
lia.
|
||||
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
|
||||
assert (Zlength (partial_result_2 :: nil) = 1). {
|
||||
unfold Zlength.
|
||||
simpl.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite H38 in H37; clear H38.
|
||||
rewrite H18 in H37.
|
||||
apply H37.
|
||||
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
|
||||
rewrite H18 in H37.
|
||||
apply H37.
|
||||
tauto.
|
||||
unfold list_store_Z.
|
||||
simpl.
|
||||
split.
|
||||
reflexivity.
|
||||
split.
|
||||
unfold partial_result_2.
|
||||
unfold unsigned_last_nbits.
|
||||
assert (2 ^ 32 = 4294967296). { nia. }
|
||||
rewrite H38; clear H38.
|
||||
apply Z.mod_pos_bound.
|
||||
lia.
|
||||
tauto.
|
||||
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
|
||||
apply H37.
|
||||
lia.
|
||||
tauto.
|
||||
tauto.
|
||||
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
|
||||
apply H37.
|
||||
lia.
|
||||
tauto.
|
||||
tauto.
|
||||
- pose proof (Zlength_sublist0 i l_r_prefix_2).
|
||||
lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_entail_wit_3_4 : mpn_add_n_entail_wit_3_4.
|
||||
Proof.
|
||||
pre_process.
|
||||
rewrite replace_Znth_app_r.
|
||||
assert (l_a_3 = l_a_2). {
|
||||
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
|
||||
specialize (H37 H13 H28).
|
||||
apply H37.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_a_3.
|
||||
assert (l_b_3 = l_b_2). {
|
||||
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
|
||||
specialize (H37 H14 H24).
|
||||
apply H37.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_b_3.
|
||||
- Exists l_r_suffix'.
|
||||
rewrite H29.
|
||||
rewrite H18.
|
||||
assert (i - i = 0) by lia.
|
||||
rewrite H37; clear H37.
|
||||
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
|
||||
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
|
||||
rewrite replace_Znth_nothing; try lia.
|
||||
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
|
||||
unfold replace_Znth.
|
||||
simpl.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite H37; clear H37.
|
||||
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
|
||||
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
|
||||
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
|
||||
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
|
||||
Exists l_b_2 l_a_2.
|
||||
entailer!.
|
||||
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
|
||||
{
|
||||
lia.
|
||||
}
|
||||
rewrite H37; clear H37.
|
||||
rewrite <- H19.
|
||||
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2 + UINT_MOD). {
|
||||
unfold unsigned_last_nbits in H4, H3.
|
||||
assert (2 ^ 32 = 4294967296). { nia. }
|
||||
rewrite H37 in H4, H3; clear H37.
|
||||
apply Z_mod_3add_carry01; try lia; try tauto;
|
||||
try unfold list_store_Z in H13, H14;
|
||||
try apply list_within_bound_Znth;
|
||||
try lia;
|
||||
try tauto.
|
||||
}
|
||||
assert ( partial_result_2 * 4294967296 ^ i + (0 + 1) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
|
||||
rewrite <- Z.mul_add_distr_r.
|
||||
rewrite (Zpow_add_1 4294967296 i); try lia.
|
||||
}
|
||||
lia.
|
||||
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
|
||||
assert (Zlength (partial_result_2 :: nil) = 1). {
|
||||
unfold Zlength.
|
||||
simpl.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite H38 in H37; clear H38.
|
||||
rewrite H18 in H37.
|
||||
apply H37.
|
||||
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
|
||||
rewrite H18 in H37.
|
||||
apply H37.
|
||||
tauto.
|
||||
unfold list_store_Z.
|
||||
simpl.
|
||||
split.
|
||||
reflexivity.
|
||||
split.
|
||||
unfold partial_result_2.
|
||||
unfold unsigned_last_nbits.
|
||||
assert (2 ^ 32 = 4294967296). { nia. }
|
||||
rewrite H38; clear H38.
|
||||
apply Z.mod_pos_bound.
|
||||
lia.
|
||||
tauto.
|
||||
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
|
||||
apply H37.
|
||||
lia.
|
||||
tauto.
|
||||
tauto.
|
||||
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
|
||||
apply H37.
|
||||
lia.
|
||||
tauto.
|
||||
tauto.
|
||||
- pose proof (Zlength_sublist0 i l_r_prefix_2).
|
||||
lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_return_wit_1 : mpn_add_n_return_wit_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
assert (l_a_2 = l_a). {
|
||||
pose proof (list_store_Z_reverse_injection l_a_2 l_a val_a val_a).
|
||||
specialize (H29 H20 H5).
|
||||
apply H29.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_a_2.
|
||||
assert (l_b_2 = l_b). {
|
||||
pose proof (list_store_Z_reverse_injection l_b_2 l_b val_b val_b).
|
||||
specialize (H29 H16 H6).
|
||||
apply H29.
|
||||
reflexivity.
|
||||
}
|
||||
subst l_b_2.
|
||||
assert (i = n_pre) by lia.
|
||||
Exists val_r_prefix.
|
||||
unfold mpd_store_Z.
|
||||
unfold mpd_store_list.
|
||||
Exists l_a.
|
||||
Exists l_b.
|
||||
entailer!.
|
||||
rewrite H14.
|
||||
rewrite H18.
|
||||
entailer!.
|
||||
unfold mpd_store_Z.
|
||||
Exists l_r_prefix.
|
||||
rewrite H29 in *.
|
||||
entailer!.
|
||||
unfold mpd_store_list.
|
||||
entailer!.
|
||||
rewrite H10.
|
||||
entailer!.
|
||||
apply store_uint_array_rec_def2undef.
|
||||
rewrite <- H29.
|
||||
assert (val_a_prefix = val_a). {
|
||||
rewrite <-H18 in H7.
|
||||
rewrite sublist_self in H7.
|
||||
unfold list_store_Z in H5.
|
||||
unfold list_store_Z in H7.
|
||||
lia.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite <- H30; clear H30.
|
||||
assert (val_b_prefix = val_b). {
|
||||
rewrite <-H14 in H8.
|
||||
rewrite sublist_self in H8.
|
||||
unfold list_store_Z in H6.
|
||||
unfold list_store_Z in H8.
|
||||
lia.
|
||||
reflexivity.
|
||||
}
|
||||
rewrite <- H30; clear H30.
|
||||
rewrite H29.
|
||||
tauto.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_which_implies_wit_1 : mpn_add_n_which_implies_wit_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
unfold mpd_store_Z.
|
||||
Intros l.
|
||||
Exists l.
|
||||
unfold mpd_store_list.
|
||||
entailer!.
|
||||
subst n_pre.
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_which_implies_wit_2 : mpn_add_n_which_implies_wit_2.
|
||||
Proof.
|
||||
pre_process.
|
||||
unfold mpd_store_Z.
|
||||
Intros l.
|
||||
Exists l.
|
||||
unfold mpd_store_list.
|
||||
entailer!.
|
||||
subst n_pre.
|
||||
entailer!.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_which_implies_wit_3 : mpn_add_n_which_implies_wit_3.
|
||||
Proof.
|
||||
pre_process.
|
||||
pose proof (store_uint_array_divide rp_pre cap_r l_r 0).
|
||||
pose proof (Zlength_nonneg l_r).
|
||||
specialize (H0 ltac:(lia) ltac:(lia)).
|
||||
destruct H0 as [H0 _].
|
||||
simpl in H0.
|
||||
entailer!.
|
||||
rewrite (sublist_nil l_r 0 0) in H0; [ | lia].
|
||||
sep_apply H0.
|
||||
entailer!.
|
||||
unfold store_uint_array, store_uint_array_rec.
|
||||
unfold store_array.
|
||||
rewrite (sublist_self l_r cap_r); [ | lia ].
|
||||
assert (rp_pre + 0 = rp_pre). { lia. }
|
||||
rewrite H2; clear H2.
|
||||
assert (cap_r - 0 = cap_r). { lia. }
|
||||
rewrite H2; clear H2.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpn_add_n_which_implies_wit_4 : mpn_add_n_which_implies_wit_4.
|
||||
Proof.
|
||||
pre_process.
|
||||
destruct l_r_suffix. {
|
||||
unfold store_uint_array_rec.
|
||||
simpl.
|
||||
entailer!.
|
||||
}
|
||||
pose proof (store_uint_array_rec_cons rp_pre i cap_r z l_r_suffix ltac:(lia)).
|
||||
sep_apply H2.
|
||||
Exists z l_r_suffix.
|
||||
entailer!.
|
||||
assert (i = 0 \/ i > 0). { lia. }
|
||||
destruct H3.
|
||||
+ subst.
|
||||
simpl.
|
||||
entailer!.
|
||||
simpl in H2.
|
||||
assert (rp_pre + 0 = rp_pre). { lia. }
|
||||
rewrite H3.
|
||||
rewrite H3 in H2.
|
||||
clear H3.
|
||||
pose proof (store_uint_array_empty rp_pre l_r_prefix).
|
||||
sep_apply H3.
|
||||
rewrite logic_equiv_andp_comm.
|
||||
rewrite logic_equiv_coq_prop_andp_sepcon.
|
||||
Intros.
|
||||
subst l_r_prefix.
|
||||
rewrite app_nil_l.
|
||||
unfold store_uint_array.
|
||||
unfold store_array.
|
||||
unfold store_array_rec.
|
||||
simpl.
|
||||
assert (rp_pre + 0 = rp_pre). { lia. }
|
||||
rewrite H4; clear H4.
|
||||
entailer!.
|
||||
+ pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 i (sublist 0 i l_r_prefix) ltac:(lia)).
|
||||
destruct H4 as [_ H4].
|
||||
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
assert (i - 0 = i). { lia. }
|
||||
rewrite H5 in H4; clear H5.
|
||||
pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 (i + 1) (sublist 0 i l_r_prefix ++ z :: nil) ltac:(lia)).
|
||||
destruct H5 as [H5 _].
|
||||
assert (i + 1 - 0 = i + 1). { lia. }
|
||||
rewrite H6 in H5; clear H6.
|
||||
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
|
||||
rewrite H6 in H5; clear H6.
|
||||
pose proof (uint_array_rec_to_uint_array rp_pre 0 i l_r_prefix).
|
||||
specialize (H6 H).
|
||||
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
|
||||
rewrite H7 in H6; clear H7.
|
||||
assert ((i-0) = i) by lia.
|
||||
rewrite H7 in H6; clear H7.
|
||||
destruct H6 as [_ H6].
|
||||
sep_apply H6.
|
||||
(* pose proof (uint_array_rec_to_uint_array rp_pre 0 (i+1) (l' ++ z :: nil)).
|
||||
assert (H_i_plus_1 : 0 <= i + 1) by lia.
|
||||
specialize (H7 H_i_plus_1); clear H_i_plus_1.
|
||||
destruct H7 as [H7 _].
|
||||
assert (i + 1 - 0 = i + 1) by lia.
|
||||
rewrite H8 in H7; clear H8.
|
||||
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
|
||||
rewrite H8 in H7; clear H8.
|
||||
rewrite <-H7.
|
||||
clear H6.
|
||||
clear H7. *)
|
||||
pose proof (store_uint_array_divide_rec rp_pre (i+1) (l_r_prefix ++ z :: nil) i).
|
||||
assert (H_tmp: 0 <= i <= i+1) by lia.
|
||||
specialize (H7 H_tmp); clear H_tmp.
|
||||
rewrite <- store_uint_array_single.
|
||||
sep_apply store_uint_array_rec_divide_rev.
|
||||
entailer!.
|
||||
lia.
|
||||
Qed.
|
||||
|
||||
Lemma proof_of_mpz_clear_return_wit_1_1 : mpz_clear_return_wit_1_1.
|
||||
Proof.
|
||||
pre_process.
|
||||
|
Reference in New Issue
Block a user