Merge remote-tracking branch 'origin/main' into mpz_sgn

This commit is contained in:
xiaoh105
2025-06-22 19:14:56 +08:00
7 changed files with 3124 additions and 91 deletions

View File

@ -469,7 +469,7 @@ Proof.
assert (0 <= Znth i l_3 0 < 4294967296). {
assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
apply H30 in H9; try tauto.
}
assert (i < Zlength l_3). {
@ -477,7 +477,7 @@ Proof.
rewrite H17.
tauto.
}
unfold list_store_Z_compact in H9.
unfold list_store_Z in H9.
apply list_within_bound_Znth.
lia.
tauto.
@ -505,7 +505,7 @@ Proof.
lia.
+ assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
apply H28 in H9; try tauto.
}
@ -539,7 +539,7 @@ Proof.
lia.
apply list_within_bound_Znth.
lia.
unfold list_store_Z_compact in H9.
unfold list_store_Z in H9.
tauto.
- pose proof (Zlength_sublist0 i l'_2).
lia.
@ -585,7 +585,7 @@ Proof.
assert (0 <= Znth i l_3 0 < 4294967296). {
assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
apply H30 in H9; try tauto.
}
assert (i < Zlength l_3). {
@ -593,7 +593,7 @@ Proof.
rewrite H17.
tauto.
}
unfold list_store_Z_compact in H9.
unfold list_store_Z in H9.
apply list_within_bound_Znth.
lia.
tauto.
@ -621,7 +621,7 @@ Proof.
lia.
+ assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
pose proof (list_store_Z_reverse_injection l_2 l_3 val val).
apply H28 in H9; try tauto.
}
@ -655,7 +655,7 @@ Proof.
lia.
apply list_within_bound_Znth.
lia.
unfold list_store_Z_compact in H9.
unfold list_store_Z in H9.
tauto.
- pose proof (Zlength_sublist0 i l'_2).
lia.
@ -664,10 +664,10 @@ Qed.
Lemma proof_of_mpn_add_1_return_wit_1 : mpn_add_1_return_wit_1.
Proof.
pre_process.
unfold mpd_store_Z_compact.
unfold mpd_store_Z.
unfold mpd_store_list.
Exists val2.
pose proof (list_store_Z_compact_reverse_injection l l_2 val val).
pose proof (list_store_Z_reverse_injection l l_2 val val).
apply H19 in H2; try tauto.
rewrite <-H2 in H10.
assert (i = n_pre) by lia.
@ -675,32 +675,33 @@ Proof.
rewrite <- H10 in H4.
rewrite (sublist_self l (Zlength l)) in H4; try tauto.
rewrite <-H2 in H12.
assert (list_store_Z l val). { apply list_store_Z_compact_to_normal. tauto. }
pose proof (list_store_Z_injection l l val1 val).
apply H22 in H4; try tauto.
apply H21 in H4; try tauto.
rewrite H4 in H6.
entailer!.
Exists l.
entailer!.
entailer!; try rewrite H20; try tauto.
- rewrite H10.
entailer!.
unfold mpd_store_Z.
unfold mpd_store_list.
Exists l'.
rewrite H7.
subst i.
entailer!.
rewrite H20.
entailer!.
apply store_uint_array_rec_def2undef.
- rewrite <- H20. tauto.
rewrite H10.
entailer!.
unfold mpd_store_Z.
unfold mpd_store_list.
Exists l'.
rewrite H7.
subst i.
entailer!.
rewrite H20.
entailer!.
apply store_uint_array_rec_def2undef.
assert (Zlength l' = n_pre) by lia.
rewrite <- H7.
tauto.
Qed.
Lemma proof_of_mpn_add_1_which_implies_wit_1 : mpn_add_1_which_implies_wit_1.
Proof.
pre_process.
unfold mpd_store_Z_compact.
unfold mpd_store_Z.
Intros l.
Exists l.
unfold mpd_store_list.
@ -807,6 +808,605 @@ Proof.
lia.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_1 : mpn_add_n_entail_wit_1.
Proof.
pre_process.
Exists l_r nil 0 0 0.
Exists l_b_2 l_a_2.
entailer!.
- unfold list_store_Z.
simpl.
tauto.
- rewrite sublist_nil; try lia; try tauto.
unfold list_store_Z.
simpl.
tauto.
- rewrite sublist_nil; try lia; try tauto.
unfold list_store_Z.
simpl.
tauto.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_2 : mpn_add_n_entail_wit_2.
Proof.
pre_process.
prop_apply (store_uint_range &("cy") cy).
entailer!.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_3_1 : mpn_add_n_entail_wit_3_1.
Proof.
pre_process.
rewrite replace_Znth_app_r.
assert (l_a_3 = l_a_2). {
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
specialize (H37 H13 H28).
apply H37.
reflexivity.
}
subst l_a_3.
assert (l_b_3 = l_b_2). {
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
specialize (H37 H14 H24).
apply H37.
reflexivity.
}
subst l_b_3.
- Exists l_r_suffix'.
rewrite H29.
rewrite H18.
assert (i - i = 0) by lia.
rewrite H37; clear H37.
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
rewrite replace_Znth_nothing; try lia.
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
unfold replace_Znth.
simpl.
reflexivity.
}
rewrite H37; clear H37.
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
Exists l_b_2 l_a_2.
entailer!.
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
{
lia.
}
rewrite H37; clear H37.
rewrite <- H19.
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2 + UINT_MOD). {
unfold unsigned_last_nbits in H4, H3.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H37 in H4, H3; clear H37.
apply Z_mod_3add_carry10; try lia; try tauto;
try unfold list_store_Z in H13, H14;
try apply list_within_bound_Znth;
try lia;
try tauto.
}
assert ( partial_result_2 * 4294967296 ^ i + (1 + 0) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
assert (Zlength (partial_result_2 :: nil) = 1). {
unfold Zlength.
simpl.
reflexivity.
}
rewrite H38 in H37; clear H38.
rewrite H18 in H37.
apply H37.
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
rewrite H18 in H37.
apply H37.
tauto.
unfold list_store_Z.
simpl.
split.
reflexivity.
split.
unfold partial_result_2.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H38; clear H38.
apply Z.mod_pos_bound.
lia.
tauto.
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
apply H37.
lia.
tauto.
tauto.
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
apply H37.
lia.
tauto.
tauto.
- pose proof (Zlength_sublist0 i l_r_prefix_2).
lia.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_3_2 : mpn_add_n_entail_wit_3_2.
Proof.
pre_process.
rewrite replace_Znth_app_r.
assert (l_a_3 = l_a_2). {
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
specialize (H37 H13 H28).
apply H37.
reflexivity.
}
subst l_a_3.
assert (l_b_3 = l_b_2). {
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
specialize (H37 H14 H24).
apply H37.
reflexivity.
}
subst l_b_3.
- Exists l_r_suffix'.
rewrite H29.
rewrite H18.
assert (i - i = 0) by lia.
rewrite H37; clear H37.
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
rewrite replace_Znth_nothing; try lia.
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
unfold replace_Znth.
simpl.
reflexivity.
}
rewrite H37; clear H37.
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
Exists l_b_2 l_a_2.
entailer!.
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
{
lia.
}
rewrite H37; clear H37.
rewrite <- H19.
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2 + UINT_MOD * 2). {
unfold unsigned_last_nbits in H4, H3.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H37 in H4, H3; clear H37.
apply Z_mod_3add_carry11; try lia; try tauto;
try unfold list_store_Z in H13, H14;
try apply list_within_bound_Znth;
try lia;
try tauto.
}
assert ( partial_result_2 * 4294967296 ^ i + (1 + 1) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
assert (Zlength (partial_result_2 :: nil) = 1). {
unfold Zlength.
simpl.
reflexivity.
}
rewrite H38 in H37; clear H38.
rewrite H18 in H37.
apply H37.
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
rewrite H18 in H37.
apply H37.
tauto.
unfold list_store_Z.
simpl.
split.
reflexivity.
split.
unfold partial_result_2.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H38; clear H38.
apply Z.mod_pos_bound.
lia.
tauto.
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
apply H37.
lia.
tauto.
tauto.
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
apply H37.
lia.
tauto.
tauto.
- pose proof (Zlength_sublist0 i l_r_prefix_2).
lia.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_3_3 : mpn_add_n_entail_wit_3_3.
Proof.
pre_process.
rewrite replace_Znth_app_r.
assert (l_a_3 = l_a_2). {
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
specialize (H37 H13 H28).
apply H37.
reflexivity.
}
subst l_a_3.
assert (l_b_3 = l_b_2). {
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
specialize (H37 H14 H24).
apply H37.
reflexivity.
}
subst l_b_3.
- Exists l_r_suffix'.
rewrite H29.
rewrite H18.
assert (i - i = 0) by lia.
rewrite H37; clear H37.
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
rewrite replace_Znth_nothing; try lia.
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
unfold replace_Znth.
simpl.
reflexivity.
}
rewrite H37; clear H37.
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
Exists l_b_2 l_a_2.
entailer!.
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
{
lia.
}
rewrite H37; clear H37.
rewrite <- H19.
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2). {
unfold unsigned_last_nbits in H4, H3.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H37 in H4, H3; clear H37.
apply Z_mod_3add_carry00; try lia; try tauto;
try unfold list_store_Z in H13, H14;
try apply list_within_bound_Znth;
try lia;
try tauto.
}
assert ( partial_result_2 * 4294967296 ^ i + (0 + 0) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
assert (Zlength (partial_result_2 :: nil) = 1). {
unfold Zlength.
simpl.
reflexivity.
}
rewrite H38 in H37; clear H38.
rewrite H18 in H37.
apply H37.
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
rewrite H18 in H37.
apply H37.
tauto.
unfold list_store_Z.
simpl.
split.
reflexivity.
split.
unfold partial_result_2.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H38; clear H38.
apply Z.mod_pos_bound.
lia.
tauto.
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
apply H37.
lia.
tauto.
tauto.
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
apply H37.
lia.
tauto.
tauto.
- pose proof (Zlength_sublist0 i l_r_prefix_2).
lia.
Qed.
Lemma proof_of_mpn_add_n_entail_wit_3_4 : mpn_add_n_entail_wit_3_4.
Proof.
pre_process.
rewrite replace_Znth_app_r.
assert (l_a_3 = l_a_2). {
pose proof (list_store_Z_reverse_injection l_a_3 l_a_2 val_a val_a).
specialize (H37 H13 H28).
apply H37.
reflexivity.
}
subst l_a_3.
assert (l_b_3 = l_b_2). {
pose proof (list_store_Z_reverse_injection l_b_3 l_b_2 val_b val_b).
specialize (H37 H14 H24).
apply H37.
reflexivity.
}
subst l_b_3.
- Exists l_r_suffix'.
rewrite H29.
rewrite H18.
assert (i - i = 0) by lia.
rewrite H37; clear H37.
set (partial_result_1 := (unsigned_last_nbits (Znth i l_a_2 0 + cy) 32)).
set (partial_result_2 := (unsigned_last_nbits (partial_result_1 + Znth i l_b_2 0) 32)).
rewrite replace_Znth_nothing; try lia.
assert ((replace_Znth 0 partial_result_2 (a :: nil)) = partial_result_2 :: nil). {
unfold replace_Znth.
simpl.
reflexivity.
}
rewrite H37; clear H37.
Exists (l_r_prefix_2 ++ partial_result_2 :: nil).
Exists (val_r_prefix_2 + partial_result_2 * (UINT_MOD ^ i)).
Exists (val_b_prefix_2 + (Znth i l_b_2 0) * (UINT_MOD ^ i)).
Exists (val_a_prefix_2 + (Znth i l_a_2 0) * (UINT_MOD ^ i)).
Exists l_b_2 l_a_2.
entailer!.
+ assert ( (val_a_prefix_2 + Znth i l_a_2 0 * 4294967296 ^ i +(val_b_prefix_2 + Znth i l_b_2 0 * 4294967296 ^ i)) = (val_a_prefix_2 + val_b_prefix_2) + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i).
{
lia.
}
rewrite H37; clear H37.
rewrite <- H19.
assert ( (Znth i l_a_2 0) + (Znth i l_b_2 0) + cy = partial_result_2 + UINT_MOD). {
unfold unsigned_last_nbits in H4, H3.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H37 in H4, H3; clear H37.
apply Z_mod_3add_carry01; try lia; try tauto;
try unfold list_store_Z in H13, H14;
try apply list_within_bound_Znth;
try lia;
try tauto.
}
assert ( partial_result_2 * 4294967296 ^ i + (0 + 1) * 4294967296 ^ (i + 1) = cy * 4294967296 ^ i + Znth i l_a_2 0 * 4294967296 ^ i + Znth i l_b_2 0 * 4294967296 ^ i). {
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (Zlength_app l_r_prefix_2 (partial_result_2 :: nil)).
assert (Zlength (partial_result_2 :: nil) = 1). {
unfold Zlength.
simpl.
reflexivity.
}
rewrite H38 in H37; clear H38.
rewrite H18 in H37.
apply H37.
+ pose proof (list_store_Z_concat l_r_prefix_2 (partial_result_2 :: nil) val_r_prefix_2 partial_result_2).
rewrite H18 in H37.
apply H37.
tauto.
unfold list_store_Z.
simpl.
split.
reflexivity.
split.
unfold partial_result_2.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H38; clear H38.
apply Z.mod_pos_bound.
lia.
tauto.
+ pose proof (list_store_Z_list_append l_b_2 i val_b_prefix_2 val_b).
apply H37.
lia.
tauto.
tauto.
+ pose proof (list_store_Z_list_append l_a_2 i val_a_prefix_2 val_a).
apply H37.
lia.
tauto.
tauto.
- pose proof (Zlength_sublist0 i l_r_prefix_2).
lia.
Qed.
Lemma proof_of_mpn_add_n_return_wit_1 : mpn_add_n_return_wit_1.
Proof.
pre_process.
assert (l_a_2 = l_a). {
pose proof (list_store_Z_reverse_injection l_a_2 l_a val_a val_a).
specialize (H29 H20 H5).
apply H29.
reflexivity.
}
subst l_a_2.
assert (l_b_2 = l_b). {
pose proof (list_store_Z_reverse_injection l_b_2 l_b val_b val_b).
specialize (H29 H16 H6).
apply H29.
reflexivity.
}
subst l_b_2.
assert (i = n_pre) by lia.
Exists val_r_prefix.
unfold mpd_store_Z.
unfold mpd_store_list.
Exists l_a.
Exists l_b.
entailer!.
rewrite H14.
rewrite H18.
entailer!.
unfold mpd_store_Z.
Exists l_r_prefix.
rewrite H29 in *.
entailer!.
unfold mpd_store_list.
entailer!.
rewrite H10.
entailer!.
apply store_uint_array_rec_def2undef.
rewrite <- H29.
assert (val_a_prefix = val_a). {
rewrite <-H18 in H7.
rewrite sublist_self in H7.
unfold list_store_Z in H5.
unfold list_store_Z in H7.
lia.
reflexivity.
}
rewrite <- H30; clear H30.
assert (val_b_prefix = val_b). {
rewrite <-H14 in H8.
rewrite sublist_self in H8.
unfold list_store_Z in H6.
unfold list_store_Z in H8.
lia.
reflexivity.
}
rewrite <- H30; clear H30.
rewrite H29.
tauto.
Qed.
Lemma proof_of_mpn_add_n_which_implies_wit_1 : mpn_add_n_which_implies_wit_1.
Proof.
pre_process.
unfold mpd_store_Z.
Intros l.
Exists l.
unfold mpd_store_list.
entailer!.
subst n_pre.
entailer!.
Qed.
Lemma proof_of_mpn_add_n_which_implies_wit_2 : mpn_add_n_which_implies_wit_2.
Proof.
pre_process.
unfold mpd_store_Z.
Intros l.
Exists l.
unfold mpd_store_list.
entailer!.
subst n_pre.
entailer!.
Qed.
Lemma proof_of_mpn_add_n_which_implies_wit_3 : mpn_add_n_which_implies_wit_3.
Proof.
pre_process.
pose proof (store_uint_array_divide rp_pre cap_r l_r 0).
pose proof (Zlength_nonneg l_r).
specialize (H0 ltac:(lia) ltac:(lia)).
destruct H0 as [H0 _].
simpl in H0.
entailer!.
rewrite (sublist_nil l_r 0 0) in H0; [ | lia].
sep_apply H0.
entailer!.
unfold store_uint_array, store_uint_array_rec.
unfold store_array.
rewrite (sublist_self l_r cap_r); [ | lia ].
assert (rp_pre + 0 = rp_pre). { lia. }
rewrite H2; clear H2.
assert (cap_r - 0 = cap_r). { lia. }
rewrite H2; clear H2.
reflexivity.
Qed.
Lemma proof_of_mpn_add_n_which_implies_wit_4 : mpn_add_n_which_implies_wit_4.
Proof.
pre_process.
destruct l_r_suffix. {
unfold store_uint_array_rec.
simpl.
entailer!.
}
pose proof (store_uint_array_rec_cons rp_pre i cap_r z l_r_suffix ltac:(lia)).
sep_apply H2.
Exists z l_r_suffix.
entailer!.
assert (i = 0 \/ i > 0). { lia. }
destruct H3.
+ subst.
simpl.
entailer!.
simpl in H2.
assert (rp_pre + 0 = rp_pre). { lia. }
rewrite H3.
rewrite H3 in H2.
clear H3.
pose proof (store_uint_array_empty rp_pre l_r_prefix).
sep_apply H3.
rewrite logic_equiv_andp_comm.
rewrite logic_equiv_coq_prop_andp_sepcon.
Intros.
subst l_r_prefix.
rewrite app_nil_l.
unfold store_uint_array.
unfold store_array.
unfold store_array_rec.
simpl.
assert (rp_pre + 0 = rp_pre). { lia. }
rewrite H4; clear H4.
entailer!.
+ pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 i (sublist 0 i l_r_prefix) ltac:(lia)).
destruct H4 as [_ H4].
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
rewrite H5 in H4; clear H5.
assert (i - 0 = i). { lia. }
rewrite H5 in H4; clear H5.
pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 (i + 1) (sublist 0 i l_r_prefix ++ z :: nil) ltac:(lia)).
destruct H5 as [H5 _].
assert (i + 1 - 0 = i + 1). { lia. }
rewrite H6 in H5; clear H6.
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
rewrite H6 in H5; clear H6.
pose proof (uint_array_rec_to_uint_array rp_pre 0 i l_r_prefix).
specialize (H6 H).
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
rewrite H7 in H6; clear H7.
assert ((i-0) = i) by lia.
rewrite H7 in H6; clear H7.
destruct H6 as [_ H6].
sep_apply H6.
(* pose proof (uint_array_rec_to_uint_array rp_pre 0 (i+1) (l' ++ z :: nil)).
assert (H_i_plus_1 : 0 <= i + 1) by lia.
specialize (H7 H_i_plus_1); clear H_i_plus_1.
destruct H7 as [H7 _].
assert (i + 1 - 0 = i + 1) by lia.
rewrite H8 in H7; clear H8.
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
rewrite H8 in H7; clear H8.
rewrite <-H7.
clear H6.
clear H7. *)
pose proof (store_uint_array_divide_rec rp_pre (i+1) (l_r_prefix ++ z :: nil) i).
assert (H_tmp: 0 <= i <= i+1) by lia.
specialize (H7 H_tmp); clear H_tmp.
rewrite <- store_uint_array_single.
sep_apply store_uint_array_rec_divide_rev.
entailer!.
lia.
Qed.
Lemma proof_of_mpz_clear_return_wit_1_1 : mpz_clear_return_wit_1_1.
Proof.
pre_process.