finish proof_of_mpn_add_n_which_implies_wit_4
This commit is contained in:
@ -1336,7 +1336,80 @@ Proof.
|
|||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma proof_of_mpn_add_n_which_implies_wit_4 : mpn_add_n_which_implies_wit_4.
|
Lemma proof_of_mpn_add_n_which_implies_wit_4 : mpn_add_n_which_implies_wit_4.
|
||||||
Proof. Admitted.
|
Proof.
|
||||||
|
pre_process.
|
||||||
|
destruct l_r_suffix. {
|
||||||
|
unfold store_uint_array_rec.
|
||||||
|
simpl.
|
||||||
|
entailer!.
|
||||||
|
}
|
||||||
|
pose proof (store_uint_array_rec_cons rp_pre i cap_r z l_r_suffix ltac:(lia)).
|
||||||
|
sep_apply H2.
|
||||||
|
Exists z l_r_suffix.
|
||||||
|
entailer!.
|
||||||
|
assert (i = 0 \/ i > 0). { lia. }
|
||||||
|
destruct H3.
|
||||||
|
+ subst.
|
||||||
|
simpl.
|
||||||
|
entailer!.
|
||||||
|
simpl in H2.
|
||||||
|
assert (rp_pre + 0 = rp_pre). { lia. }
|
||||||
|
rewrite H3.
|
||||||
|
rewrite H3 in H2.
|
||||||
|
clear H3.
|
||||||
|
pose proof (store_uint_array_empty rp_pre l_r_prefix).
|
||||||
|
sep_apply H3.
|
||||||
|
rewrite logic_equiv_andp_comm.
|
||||||
|
rewrite logic_equiv_coq_prop_andp_sepcon.
|
||||||
|
Intros.
|
||||||
|
subst l_r_prefix.
|
||||||
|
rewrite app_nil_l.
|
||||||
|
unfold store_uint_array.
|
||||||
|
unfold store_array.
|
||||||
|
unfold store_array_rec.
|
||||||
|
simpl.
|
||||||
|
assert (rp_pre + 0 = rp_pre). { lia. }
|
||||||
|
rewrite H4; clear H4.
|
||||||
|
entailer!.
|
||||||
|
+ pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 i (sublist 0 i l_r_prefix) ltac:(lia)).
|
||||||
|
destruct H4 as [_ H4].
|
||||||
|
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
|
||||||
|
rewrite H5 in H4; clear H5.
|
||||||
|
assert (i - 0 = i). { lia. }
|
||||||
|
rewrite H5 in H4; clear H5.
|
||||||
|
pose proof (Aux.uint_array_rec_to_uint_array rp_pre 0 (i + 1) (sublist 0 i l_r_prefix ++ z :: nil) ltac:(lia)).
|
||||||
|
destruct H5 as [H5 _].
|
||||||
|
assert (i + 1 - 0 = i + 1). { lia. }
|
||||||
|
rewrite H6 in H5; clear H6.
|
||||||
|
assert (rp_pre + sizeof(UINT) * 0 = rp_pre). { lia. }
|
||||||
|
rewrite H6 in H5; clear H6.
|
||||||
|
pose proof (uint_array_rec_to_uint_array rp_pre 0 i l_r_prefix).
|
||||||
|
specialize (H6 H).
|
||||||
|
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
|
||||||
|
rewrite H7 in H6; clear H7.
|
||||||
|
assert ((i-0) = i) by lia.
|
||||||
|
rewrite H7 in H6; clear H7.
|
||||||
|
destruct H6 as [_ H6].
|
||||||
|
sep_apply H6.
|
||||||
|
(* pose proof (uint_array_rec_to_uint_array rp_pre 0 (i+1) (l' ++ z :: nil)).
|
||||||
|
assert (H_i_plus_1 : 0 <= i + 1) by lia.
|
||||||
|
specialize (H7 H_i_plus_1); clear H_i_plus_1.
|
||||||
|
destruct H7 as [H7 _].
|
||||||
|
assert (i + 1 - 0 = i + 1) by lia.
|
||||||
|
rewrite H8 in H7; clear H8.
|
||||||
|
assert ((rp_pre + sizeof ( UINT ) * 0) = rp_pre) by lia.
|
||||||
|
rewrite H8 in H7; clear H8.
|
||||||
|
rewrite <-H7.
|
||||||
|
clear H6.
|
||||||
|
clear H7. *)
|
||||||
|
pose proof (store_uint_array_divide_rec rp_pre (i+1) (l_r_prefix ++ z :: nil) i).
|
||||||
|
assert (H_tmp: 0 <= i <= i+1) by lia.
|
||||||
|
specialize (H7 H_tmp); clear H_tmp.
|
||||||
|
rewrite <- store_uint_array_single.
|
||||||
|
sep_apply store_uint_array_rec_divide_rev.
|
||||||
|
entailer!.
|
||||||
|
lia.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma proof_of_mpz_clear_return_wit_1_1 : mpz_clear_return_wit_1_1.
|
Lemma proof_of_mpz_clear_return_wit_1_1 : mpz_clear_return_wit_1_1.
|
||||||
Proof.
|
Proof.
|
||||||
|
Reference in New Issue
Block a user