finish uncarry

This commit is contained in:
2025-06-21 08:00:17 +00:00
parent 0656f30a16
commit 9ccea05835
2 changed files with 119 additions and 1 deletions

View File

@ -27,6 +27,12 @@ Lemma Z_mod_add_carry: forall (a b m: Z),
a + b = (a + b) mod m + m. a + b = (a + b) mod m + m.
Proof. Admitted. Proof. Admitted.
Lemma Z_mod_add_uncarry: forall (a b m: Z),
m > 0 -> 0 <= a < m -> 0 <= b < m ->
(a + b) mod m >= b ->
a + b = (a + b) mod m.
Proof. Admitted.
Lemma Z_of_nat_succ: forall (n: nat), Lemma Z_of_nat_succ: forall (n: nat),
Z.of_nat (S n) = Z.of_nat n + 1. Z.of_nat (S n) = Z.of_nat n + 1.
Proof. lia. Qed. Proof. lia. Qed.

View File

@ -548,7 +548,119 @@ Qed.
Lemma proof_of_mpn_add_1_entail_wit_3_2 : mpn_add_1_entail_wit_3_2. Lemma proof_of_mpn_add_1_entail_wit_3_2 : mpn_add_1_entail_wit_3_2.
Proof. Proof.
pre_process. pre_process.
Admitted. rewrite replace_Znth_app_r.
- Exists l'''.
rewrite H14.
assert (i - i = 0) by lia.
rewrite H26.
set (new_b := (unsigned_last_nbits (Znth i l_3 0 + b) 32)).
rewrite replace_Znth_nothing; try lia.
assert (replace_Znth 0 new_b (a :: nil) = new_b :: nil). {
unfold replace_Znth.
unfold Z.to_nat.
unfold replace_nth.
reflexivity.
}
rewrite H27.
Exists (l'_2 ++ new_b :: nil).
Exists (val2_2 + new_b * (UINT_MOD^ i)).
Exists (val1_2 + (Znth i l_3 0) * (UINT_MOD^ i)).
Exists l_3.
entailer!.
+ rewrite Zlength_app.
rewrite H14.
unfold Zlength.
unfold Zlength_aux.
lia.
+ assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i + b_pre = (val1_2 + b_pre) + Znth i l_3 0 * 4294967296 ^ i) by lia.
rewrite H28.
rewrite <- H13.
assert (Znth i l_3 0 + b = new_b).
{
subst new_b.
unfold unsigned_last_nbits.
unfold unsigned_last_nbits in H3.
assert (2^32 = 4294967296). { nia. }
rewrite H29 in *.
assert (0 <= Znth i l_3 0 < 4294967296). {
assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
apply H30 in H9; try tauto.
}
assert (i < Zlength l_3). {
subst l_3.
rewrite H17.
tauto.
}
unfold list_store_Z_compact in H9.
apply list_within_bound_Znth.
lia.
tauto.
}
apply Z_mod_add_uncarry; try lia; try tauto.
}
assert (b * 4294967296 ^ i + Znth i l_3 0 * 4294967296 ^ i = new_b * 4294967296 ^ i + 0 * 4294967296 ^ (i + 1)).
{
subst new_b.
Search [ Zmult Zplus "distr" ].
rewrite <- Z.mul_add_distr_r.
rewrite (Zpow_add_1 4294967296 i); try lia.
}
lia.
+ pose proof (__list_store_Z_concat_r l'_2 val2_2 new_b).
apply H28 in H12.
rewrite H14 in H12.
assert (new_b * 4294967296 ^ i + val2_2 = (val2_2 + new_b * 4294967296 ^ i)) by lia.
rewrite H29 in H12.
tauto.
subst new_b.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H29.
apply Z.mod_pos_bound.
lia.
+ assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
apply H28 in H9; try tauto.
}
assert (i < Zlength l_3). {
subst l_3.
rewrite H17.
tauto.
}
assert((sublist 0 (i + 1) l_3) = (sublist 0 i l_3) ++ (Znth i l_3 0) :: nil). {
pose proof (sublist_split 0 (i+1) i l_3).
pose proof (sublist_single i l_3 0).
rewrite <-H31.
apply H30.
lia.
subst l_3.
rewrite Zlength_correct in H29.
lia.
rewrite Zlength_correct in H29.
lia.
}
rewrite H30.
pose proof (__list_store_Z_concat_r (sublist 0 i l_3) val1_2 (Znth i l_3 0)).
apply H31 in H11.
rewrite Zlength_sublist0 in H11.
assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i = Znth i l_3 0 * 4294967296 ^ i + val1_2) by lia.
rewrite H32.
tauto.
subst l_3.
rewrite H17.
lia.
apply list_within_bound_Znth.
lia.
unfold list_store_Z_compact in H9.
tauto.
- pose proof (Zlength_sublist0 i l'_2).
lia.
Qed.
Lemma proof_of_mpn_add_1_return_wit_1 : mpn_add_1_return_wit_1. Lemma proof_of_mpn_add_1_return_wit_1 : mpn_add_1_return_wit_1.
Proof. Proof.