ready to finalize proof_of_mpn_add_1_entail_wit_2_1

This commit is contained in:
2025-06-21 05:45:27 +00:00
parent 49848bd048
commit f462570ccd
4 changed files with 435 additions and 52 deletions

View File

@ -407,13 +407,119 @@ Proof.
Qed.
Lemma proof_of_mpn_add_1_entail_wit_1 : mpn_add_1_entail_wit_1.
Proof. Admitted.
Proof.
pre_process.
Exists l2 nil 0 0 l_2.
entailer!.
- unfold list_store_Z.
split.
+ simpl. tauto.
+ simpl. tauto.
- rewrite (sublist_nil l_2 0 0); try lia.
unfold list_store_Z.
split.
+ simpl. tauto.
+ simpl. tauto.
Qed.
Lemma proof_of_mpn_add_1_entail_wit_2_1 : mpn_add_1_entail_wit_2_1.
Proof. Admitted.
Proof.
pre_process.
rewrite replace_Znth_app_r.
- Exists l'''.
rewrite H12.
assert (i - i = 0) by lia.
rewrite H24.
set (new_b := (unsigned_last_nbits (Znth i l_3 0 + b) 32)).
rewrite replace_Znth_nothing; try lia.
assert (replace_Znth 0 new_b (a :: nil) = new_b :: nil). {
unfold replace_Znth.
unfold Z.to_nat.
unfold replace_nth.
reflexivity.
}
rewrite H25.
Exists (l'_2 ++ new_b :: nil).
Exists (val2_2 + new_b * (UINT_MOD^ i)).
Exists (val1_2 + (Znth i l_3 0) * (UINT_MOD^ i)).
Exists l_3.
entailer!.
+ rewrite Zlength_app.
rewrite H12.
unfold Zlength.
unfold Zlength_aux.
lia.
+ assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i + b_pre = (val1_2 + b_pre) + Znth i l_3 0 * 4294967296 ^ i) by lia.
rewrite H26.
rewrite <- H11.
assert (Znth i l_3 0 + b = new_b + UINT_MOD).
{
subst new_b.
unfold unsigned_last_nbits.
unfold unsigned_last_nbits in H3.
assert (2^32 = 4294967296). { nia. }
rewrite H27 in *.
admit.
}
admit.
+ pose proof (__list_store_Z_concat_r l'_2 val2_2 new_b).
apply H26 in H10.
rewrite H12 in H10.
assert (new_b * 4294967296 ^ i + val2_2 = (val2_2 + new_b * 4294967296 ^ i)) by lia.
rewrite H27 in H10.
tauto.
subst new_b.
unfold unsigned_last_nbits.
assert (2 ^ 32 = 4294967296). { nia. }
rewrite H27.
apply Z.mod_pos_bound.
lia.
+ assert (l_2=l_3).
{
pose proof (list_store_Z_compact_reverse_injection l_2 l_3 val val).
apply H26 in H7; try tauto.
}
assert (i < Zlength l_3). {
subst l_3.
rewrite H15.
tauto.
}
assert((sublist 0 (i + 1) l_3) = (sublist 0 i l_3) ++ (Znth i l_3 0) :: nil). {
pose proof (sublist_split 0 (i+1) i l_3).
pose proof (sublist_single i l_3 0).
rewrite <-H29.
apply H28.
lia.
subst l_3.
rewrite Zlength_correct in H27.
lia.
rewrite Zlength_correct in H27.
lia.
}
rewrite H28.
pose proof (__list_store_Z_concat_r (sublist 0 i l_3) val1_2 (Znth i l_3 0)).
apply H29 in H9.
rewrite Zlength_sublist0 in H9.
assert (val1_2 + Znth i l_3 0 * 4294967296 ^ i = Znth i l_3 0 * 4294967296 ^ i + val1_2) by lia.
rewrite H30.
tauto.
subst l_3.
rewrite H15.
lia.
apply list_within_bound_Znth.
lia.
unfold list_store_Z_compact in H7.
tauto.
- pose proof (Zlength_sublist0 i l'_2).
lia.
Admitted.
Lemma proof_of_mpn_add_1_entail_wit_2_2 : mpn_add_1_entail_wit_2_2.
Proof. Admitted.
Proof.
pre_process.
Admitted.
Lemma proof_of_mpn_add_1_return_wit_1 : mpn_add_1_return_wit_1.
Proof.
@ -455,4 +561,7 @@ Lemma proof_of_mpn_add_1_which_implies_wit_1 : mpn_add_1_which_implies_wit_1.
Proof. Admitted.
Lemma proof_of_mpn_add_1_which_implies_wit_2 : mpn_add_1_which_implies_wit_2.
Proof. Admitted.
Lemma proof_of_mpn_add_1_which_implies_wit_3 : mpn_add_1_which_implies_wit_3.
Proof. Admitted.