299 lines
7.5 KiB
Coq
299 lines
7.5 KiB
Coq
Require Import Coq.ZArith.ZArith.
|
|
Require Import Coq.Bool.Bool.
|
|
Require Import Coq.Strings.String.
|
|
Require Import Coq.Lists.List.
|
|
Require Import Coq.Classes.RelationClasses.
|
|
Require Import Coq.Classes.Morphisms.
|
|
Require Import Coq.micromega.Psatz.
|
|
Require Import Coq.Sorting.Permutation.
|
|
From AUXLib Require Import int_auto Axioms Feq Idents List_lemma VMap.
|
|
Require Import SetsClass.SetsClass. Import SetsNotation.
|
|
From SimpleC.SL Require Import Mem SeparationLogic.
|
|
From GmpLib Require Import gmp_goal.
|
|
Require Import GmpLib.GmpNumber. Import Internal.
|
|
Require Import GmpLib.GmpAux.
|
|
Require Import Logic.LogicGenerator.demo932.Interface.
|
|
Local Open Scope Z_scope.
|
|
Local Open Scope sets.
|
|
Local Open Scope string.
|
|
Local Open Scope list.
|
|
Import naive_C_Rules.
|
|
Local Open Scope sac.
|
|
|
|
Lemma proof_of_gmp_abs_return_wit_1_1 : gmp_abs_return_wit_1_1.
|
|
Proof. pre_process. Qed.
|
|
|
|
|
|
Lemma proof_of_gmp_abs_return_wit_1_2 : gmp_abs_return_wit_1_2.
|
|
Proof. pre_process. Qed.
|
|
|
|
Lemma proof_of_gmp_max_return_wit_1_1 : gmp_max_return_wit_1_1.
|
|
Proof.
|
|
pre_process.
|
|
entailer!.
|
|
unfold Zmax.
|
|
rewrite Z.max_r; lia.
|
|
Qed.
|
|
|
|
Lemma proof_of_gmp_max_return_wit_1_2 : gmp_max_return_wit_1_2.
|
|
Proof.
|
|
pre_process.
|
|
entailer!.
|
|
unfold Zmax.
|
|
rewrite Z.max_l; lia.
|
|
Qed.
|
|
|
|
Lemma proof_of_gmp_cmp_return_wit_1_2 : gmp_cmp_return_wit_1_2.
|
|
Proof.
|
|
pre_process.
|
|
repeat rewrite <-derivable1_orp_intros1.
|
|
entailer!.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_copyi_entail_wit_1 : mpn_copyi_entail_wit_1.
|
|
Proof.
|
|
pre_process.
|
|
Exists l2 l_2.
|
|
entailer!.
|
|
pose proof (Zlength_nonneg l_2).
|
|
lia.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_copyi_entail_wit_2 : mpn_copyi_entail_wit_2.
|
|
Proof.
|
|
pre_process.
|
|
Exists l2' l_3.
|
|
entailer!.
|
|
rewrite replace_Znth_app_r.
|
|
+ rewrite Zlength_sublist0; [ | lia ].
|
|
assert (i - i = 0). { lia. }
|
|
rewrite H15; clear H15.
|
|
assert (replace_Znth 0 (Znth i l_3 0) (a :: nil) = sublist i (i + 1) l_3). {
|
|
unfold replace_Znth, Z.to_nat, replace_nth.
|
|
rewrite (sublist_single i l_3 0); [ reflexivity | ].
|
|
rewrite <-Zlength_correct; lia.
|
|
}
|
|
rewrite H15; clear H15.
|
|
rewrite replace_Znth_nothing.
|
|
- rewrite <-sublist_split; try lia; try reflexivity.
|
|
rewrite <-Zlength_correct; lia.
|
|
- pose proof (Zlength_sublist0 i l_3 ltac:(lia)).
|
|
lia.
|
|
+ pose proof (Zlength_sublist0 i l_3); lia.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_copyi_which_implies_wit_1 : mpn_copyi_which_implies_wit_1.
|
|
Proof.
|
|
pre_process.
|
|
unfold mpd_store_Z.
|
|
Intros l.
|
|
Exists l.
|
|
unfold mpd_store_list.
|
|
entailer!.
|
|
subst.
|
|
entailer!.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_copyi_which_implies_wit_2 : mpn_copyi_which_implies_wit_2.
|
|
Proof.
|
|
pre_process.
|
|
pose proof (store_uint_array_divide d cap2 l2 0).
|
|
pose proof (Zlength_nonneg l2).
|
|
specialize (H0 ltac:(lia) ltac:(lia)).
|
|
destruct H0 as [H0 _].
|
|
simpl in H0.
|
|
entailer!.
|
|
rewrite (sublist_nil l2 0 0) in H0; [ | lia].
|
|
sep_apply H0.
|
|
entailer!.
|
|
unfold store_uint_array, store_uint_array_rec.
|
|
unfold store_array.
|
|
rewrite (sublist_self l2 cap2); [ | lia ].
|
|
assert (d + 0 = d). { lia. }
|
|
rewrite H2; clear H2.
|
|
assert (cap2 - 0 = cap2). { lia. }
|
|
rewrite H2; clear H2.
|
|
reflexivity.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_copyi_which_implies_wit_3 : mpn_copyi_which_implies_wit_3.
|
|
Proof.
|
|
pre_process.
|
|
destruct l'. {
|
|
unfold store_uint_array_rec.
|
|
simpl.
|
|
entailer!.
|
|
}
|
|
pose proof (store_uint_array_rec_cons d i cap2 z l' ltac:(lia)).
|
|
sep_apply H2.
|
|
Exists z l'.
|
|
entailer!.
|
|
assert (i = 0 \/ i > 0). { lia. }
|
|
destruct H3.
|
|
+ subst.
|
|
unfold store_uint_array, store_array.
|
|
simpl.
|
|
entailer!.
|
|
+ pose proof (Aux.store_uarray_rec_equals_store_uarray d 0 i (sublist 0 i l) ltac:(lia)).
|
|
destruct H4 as [_ H4].
|
|
assert (d + sizeof(UINT) * 0 = d). { lia. }
|
|
rewrite H5 in H4; clear H5.
|
|
assert (i - 0 = i). { lia. }
|
|
rewrite H5 in H4; clear H5.
|
|
sep_apply H4; clear H4.
|
|
pose proof (Aux.store_uarray_rec_equals_store_uarray d 0 (i + 1) (sublist 0 i l ++ z :: nil) ltac:(lia)).
|
|
destruct H4 as [H4 _].
|
|
assert (i + 1 - 0 = i + 1). { lia. }
|
|
rewrite H5 in H4; clear H5.
|
|
assert (d + sizeof(UINT) * 0 = d). { lia. }
|
|
rewrite H5 in H4; clear H5.
|
|
rewrite <-H4.
|
|
sep_apply store_uint_array_rec_tail_merge; [ reflexivity | lia ].
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp_safety_wit_1 : mpn_cmp_safety_wit_1.
|
|
Proof.
|
|
pre_process.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp_entail_wit_1 : mpn_cmp_entail_wit_1.
|
|
Proof.
|
|
pre_process.
|
|
entailer!.
|
|
assert (n_pre - 1 + 1 = n_pre). { lia. }
|
|
rewrite H8; clear H8.
|
|
pose proof (Zlength_sublist n_pre n_pre l1 ltac:(lia)).
|
|
pose proof (Zlength_nil_inv (sublist n_pre n_pre l1) ltac:(lia)).
|
|
rewrite H9.
|
|
pose proof (Zlength_sublist n_pre n_pre l2 ltac:(lia)).
|
|
pose proof (Zlength_nil_inv (sublist n_pre n_pre l2) ltac:(lia)).
|
|
rewrite H11.
|
|
reflexivity.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp_entail_wit_2 : mpn_cmp_entail_wit_2.
|
|
Proof.
|
|
pre_process.
|
|
entailer!; try lia.
|
|
assert (n - 1 + 1 = n). { lia. }
|
|
rewrite H17; clear H17.
|
|
assert (n_pre <= Z.of_nat (Datatypes.length l1)). {
|
|
rewrite <-Zlength_correct.
|
|
lia.
|
|
}
|
|
assert (n_pre <= Z.of_nat (Datatypes.length l2)). {
|
|
rewrite <-Zlength_correct.
|
|
lia.
|
|
}
|
|
rewrite (sublist_split n n_pre (n + 1) l1 ltac:(lia) ltac:(lia)).
|
|
rewrite (sublist_split n n_pre (n + 1) l2 ltac:(lia) ltac:(lia)).
|
|
rewrite (sublist_single n l1 0 ltac:(lia)).
|
|
rewrite (sublist_single n l2 0 ltac:(lia)).
|
|
rewrite H.
|
|
rewrite H7.
|
|
reflexivity.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp_return_wit_1_1 : mpn_cmp_return_wit_1_1.
|
|
Proof.
|
|
pre_process.
|
|
entailer!.
|
|
Left; Left.
|
|
entailer!.
|
|
+ unfold mpd_store_Z_compact.
|
|
Exists l1 l2.
|
|
unfold mpd_store_list.
|
|
entailer!.
|
|
rewrite <-H6, <-H7.
|
|
entailer!.
|
|
+ assert (Znth n l1 0 < Znth n l2 0). { lia. }
|
|
clear H H0.
|
|
apply (list_store_Z_compact_cmp l1 l2 val1 val2 n ltac:(lia) ltac:(lia) H4 H5).
|
|
- rewrite <-H6, <-H7.
|
|
tauto.
|
|
- lia.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp_return_wit_1_2 : mpn_cmp_return_wit_1_2.
|
|
Proof.
|
|
pre_process.
|
|
Right.
|
|
entailer!.
|
|
+ unfold mpd_store_Z_compact, mpd_store_list.
|
|
Exists l1 l2.
|
|
rewrite <-H6, <-H7.
|
|
entailer!.
|
|
+ pose proof (list_store_Z_compact_cmp l2 l1 val2 val1 n ltac:(lia) ltac:(lia) H5 H4).
|
|
rewrite <-H6, <-H7 in H18.
|
|
rewrite H8 in H18.
|
|
specialize (H18 ltac:(reflexivity) ltac:(lia)).
|
|
lia.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp_which_implies_wit_1 : mpn_cmp_which_implies_wit_1.
|
|
Proof.
|
|
pre_process.
|
|
unfold mpd_store_Z_compact.
|
|
Intros l1 l2.
|
|
Exists l2 l1.
|
|
unfold mpd_store_list.
|
|
entailer!.
|
|
rewrite <-H0, <-H2.
|
|
entailer!.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp4_return_wit_1_1 : mpn_cmp4_return_wit_1_1.
|
|
Proof.
|
|
pre_process.
|
|
Right.
|
|
unfold mpd_store_Z_compact.
|
|
Intros l1 l2.
|
|
Exists l1 l2.
|
|
entailer!.
|
|
pose proof (list_store_Z_cmp_length l2 l1 val2 val1 ltac:(lia) H9 H7).
|
|
lia.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp4_return_wit_1_2 : mpn_cmp4_return_wit_1_2.
|
|
Proof.
|
|
pre_process.
|
|
Left; Left.
|
|
unfold mpd_store_Z_compact.
|
|
entailer!.
|
|
Intros l1 l2.
|
|
Exists l1 l2.
|
|
entailer!.
|
|
pose proof (list_store_Z_cmp_length l1 l2 val1 val2 ltac:(lia) H7 H9).
|
|
lia.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp4_return_wit_2_1 : mpn_cmp4_return_wit_2_1.
|
|
Proof.
|
|
pre_process.
|
|
Right.
|
|
unfold mpd_store_Z_compact.
|
|
Intros l1 l2.
|
|
Exists l1 l2.
|
|
entailer!.
|
|
Qed.
|
|
|
|
|
|
Lemma proof_of_mpn_cmp4_return_wit_2_2 : mpn_cmp4_return_wit_2_2.
|
|
Proof.
|
|
pre_process.
|
|
Left; Right.
|
|
unfold mpd_store_Z_compact.
|
|
Intros l1 l2.
|
|
Exists l1 l2.
|
|
entailer!.
|
|
Qed.
|
|
|
|
Lemma proof_of_mpn_cmp4_return_wit_2_3 : mpn_cmp4_return_wit_2_3.
|
|
Proof.
|
|
pre_process.
|
|
Left; Left.
|
|
unfold mpd_store_Z_compact.
|
|
Intros l1 l2.
|
|
Exists l1 l2.
|
|
entailer!.
|
|
Qed. |