This commit is contained in:
2024-07-01 03:28:34 +00:00
parent 4895d0eecf
commit 181491b151

View File

@ -287,6 +287,7 @@ class AlphaBetaAgent(MultiAgentSearchAgent):
# print(f"stat:{stat}")
return stat[1][0]
last_score=0
class ExpectimaxAgent(MultiAgentSearchAgent):
"""
Your expectimax agent (question 4)
@ -312,6 +313,8 @@ class ExpectimaxAgent(MultiAgentSearchAgent):
successorGameState = gameState.generateSuccessor(agentIndex,action)
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
if action=="Stop":
val-=100
if val>res_val:
res_val=val
# print(f"action:{action}, action_list:{action_list}")
@ -340,6 +343,8 @@ class ExpectimaxAgent(MultiAgentSearchAgent):
All ghosts should be modeled as choosing uniformly at random from their
legal moves.
"""
global last_score
last_score=gameState.getScore()
stat = self.ExpectMaxSearch(gameState,self.depth,0)
# print(f"stat:{stat}")
return stat[1][0]
@ -351,8 +356,53 @@ def betterEvaluationFunction(currentGameState: GameState):
DESCRIPTION: <write something here so we know what you did>
"""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
# Useful information you can extract from a GameState (pacman.py)
if currentGameState.isLose():
return -500
if currentGameState.isWin():
return 500
kInf=1e100
capsules_position = currentGameState.getCapsules()
current_pos = currentGameState.getPacmanPosition()
food_positions = currentGameState.getFood().asList()
# print(f"action:{action}, action_vec:{action_vec}")
current_ghost_positions = currentGameState.getGhostPositions()
current_ghost_scared_times = [ghostState.scaredTimer for ghostState in currentGameState.getGhostStates()]
not_scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]==0]
scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>0 and current_ghost_scared_times[i]<=1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2]
edible_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2]
current_self_position = currentGameState.getPacmanPosition()
def DotProduct(a,b):
return a[0]*b[0]+a[1]*b[1]
def CrossProduct(a,b):
return a[0]*b[1]-a[1]*b[0]
def EuclideanDistance(a,b):
return ((a[0]-b[0])**2+(a[1]-b[1])**2)**0.5
def DistanceAnalysis(current_self_position,object_postion_list,flag="None"):
if len(object_postion_list)==0:
return 0
if current_self_position in object_postion_list:
return kInf
res=0
for obj_pos in object_postion_list:
if flag=="Ghost" and util.manhattanDistance(current_self_position,obj_pos)>=6:
continue
distance_to_obj=util.manhattanDistance(current_self_position,obj_pos)
res=max(res,1/distance_to_obj)
return res
da_for_foods=DistanceAnalysis(current_self_position,food_positions)
da_for_unscared_ghosts=DistanceAnalysis(current_self_position,not_scared_ghosts_positions,"Ghost")
da_for_scared_ghosts=DistanceAnalysis(current_self_position,scared_ghosts_positions)
da_for_capsules=DistanceAnalysis(current_self_position,capsules_position)
da_for_edible_ghosts=DistanceAnalysis(current_self_position,edible_ghosts_positions)
res=da_for_capsules*2-da_for_unscared_ghosts*2-da_for_scared_ghosts*0.2+da_for_foods*0.2+da_for_edible_ghosts*1
# res*=random.uniform(0.9, 1.1)
res*=100
global last_score
res+=(currentGameState.getScore()-last_score)*10
# print(f"res:{res}")
return res
# Abbreviation
better = betterEvaluationFunction