q6
This commit is contained in:
@ -287,6 +287,7 @@ class AlphaBetaAgent(MultiAgentSearchAgent):
|
||||
# print(f"stat:{stat}")
|
||||
return stat[1][0]
|
||||
|
||||
last_score=0
|
||||
class ExpectimaxAgent(MultiAgentSearchAgent):
|
||||
"""
|
||||
Your expectimax agent (question 4)
|
||||
@ -312,6 +313,8 @@ class ExpectimaxAgent(MultiAgentSearchAgent):
|
||||
successorGameState = gameState.generateSuccessor(agentIndex,action)
|
||||
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
|
||||
val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
|
||||
if action=="Stop":
|
||||
val-=100
|
||||
if val>res_val:
|
||||
res_val=val
|
||||
# print(f"action:{action}, action_list:{action_list}")
|
||||
@ -340,6 +343,8 @@ class ExpectimaxAgent(MultiAgentSearchAgent):
|
||||
All ghosts should be modeled as choosing uniformly at random from their
|
||||
legal moves.
|
||||
"""
|
||||
global last_score
|
||||
last_score=gameState.getScore()
|
||||
stat = self.ExpectMaxSearch(gameState,self.depth,0)
|
||||
# print(f"stat:{stat}")
|
||||
return stat[1][0]
|
||||
@ -351,8 +356,53 @@ def betterEvaluationFunction(currentGameState: GameState):
|
||||
|
||||
DESCRIPTION: <write something here so we know what you did>
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
# Useful information you can extract from a GameState (pacman.py)
|
||||
if currentGameState.isLose():
|
||||
return -500
|
||||
if currentGameState.isWin():
|
||||
return 500
|
||||
kInf=1e100
|
||||
capsules_position = currentGameState.getCapsules()
|
||||
current_pos = currentGameState.getPacmanPosition()
|
||||
food_positions = currentGameState.getFood().asList()
|
||||
# print(f"action:{action}, action_vec:{action_vec}")
|
||||
current_ghost_positions = currentGameState.getGhostPositions()
|
||||
current_ghost_scared_times = [ghostState.scaredTimer for ghostState in currentGameState.getGhostStates()]
|
||||
not_scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]==0]
|
||||
scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>0 and current_ghost_scared_times[i]<=1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2]
|
||||
edible_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2]
|
||||
current_self_position = currentGameState.getPacmanPosition()
|
||||
def DotProduct(a,b):
|
||||
return a[0]*b[0]+a[1]*b[1]
|
||||
def CrossProduct(a,b):
|
||||
return a[0]*b[1]-a[1]*b[0]
|
||||
def EuclideanDistance(a,b):
|
||||
return ((a[0]-b[0])**2+(a[1]-b[1])**2)**0.5
|
||||
def DistanceAnalysis(current_self_position,object_postion_list,flag="None"):
|
||||
if len(object_postion_list)==0:
|
||||
return 0
|
||||
if current_self_position in object_postion_list:
|
||||
return kInf
|
||||
res=0
|
||||
for obj_pos in object_postion_list:
|
||||
if flag=="Ghost" and util.manhattanDistance(current_self_position,obj_pos)>=6:
|
||||
continue
|
||||
distance_to_obj=util.manhattanDistance(current_self_position,obj_pos)
|
||||
res=max(res,1/distance_to_obj)
|
||||
return res
|
||||
|
||||
da_for_foods=DistanceAnalysis(current_self_position,food_positions)
|
||||
da_for_unscared_ghosts=DistanceAnalysis(current_self_position,not_scared_ghosts_positions,"Ghost")
|
||||
da_for_scared_ghosts=DistanceAnalysis(current_self_position,scared_ghosts_positions)
|
||||
da_for_capsules=DistanceAnalysis(current_self_position,capsules_position)
|
||||
da_for_edible_ghosts=DistanceAnalysis(current_self_position,edible_ghosts_positions)
|
||||
res=da_for_capsules*2-da_for_unscared_ghosts*2-da_for_scared_ghosts*0.2+da_for_foods*0.2+da_for_edible_ghosts*1
|
||||
# res*=random.uniform(0.9, 1.1)
|
||||
res*=100
|
||||
global last_score
|
||||
res+=(currentGameState.getScore()-last_score)*10
|
||||
# print(f"res:{res}")
|
||||
return res
|
||||
|
||||
# Abbreviation
|
||||
better = betterEvaluationFunction
|
||||
|
Reference in New Issue
Block a user