q4
This commit is contained in:
@ -292,6 +292,47 @@ class ExpectimaxAgent(MultiAgentSearchAgent):
|
|||||||
Your expectimax agent (question 4)
|
Your expectimax agent (question 4)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
def ExpectMaxSearch(self,gameState: GameState,depth_remain:int,agentIndex:int) -> tuple[int, list[Actions]]:
|
||||||
|
if depth_remain==0:
|
||||||
|
# print(f"depth_remain:{depth_remain}")
|
||||||
|
# print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}")
|
||||||
|
return self.evaluationFunction(gameState),[]
|
||||||
|
legal_actions = gameState.getLegalActions(agentIndex)
|
||||||
|
if len(legal_actions)==0:
|
||||||
|
# print(f"depth_remain:{depth_remain}")
|
||||||
|
# print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}")
|
||||||
|
return self.evaluationFunction(gameState),[]
|
||||||
|
kInf=1e100
|
||||||
|
res_action=[]
|
||||||
|
res_val=0
|
||||||
|
if agentIndex==0:
|
||||||
|
# Max
|
||||||
|
res_val = -kInf
|
||||||
|
for action in legal_actions:
|
||||||
|
successorGameState = gameState.generateSuccessor(agentIndex,action)
|
||||||
|
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
|
||||||
|
val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
|
||||||
|
if val>res_val:
|
||||||
|
res_val=val
|
||||||
|
# print(f"action:{action}, action_list:{action_list}")
|
||||||
|
res_action=[action]+action_list
|
||||||
|
else:
|
||||||
|
# Mins
|
||||||
|
res_val = kInf
|
||||||
|
val_list=[]
|
||||||
|
for action in legal_actions:
|
||||||
|
successorGameState = gameState.generateSuccessor(agentIndex,action)
|
||||||
|
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
|
||||||
|
val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
|
||||||
|
val_list.append(val)
|
||||||
|
if val<res_val:
|
||||||
|
res_val=val
|
||||||
|
res_action=[action]+action_list
|
||||||
|
res_val=sum(val_list)/len(val_list)
|
||||||
|
# print(f"depth_remain:{depth_remain}")
|
||||||
|
# print(f"returning {res_val}, {res_action}")
|
||||||
|
return res_val,res_action
|
||||||
|
|
||||||
def getAction(self, gameState: GameState):
|
def getAction(self, gameState: GameState):
|
||||||
"""
|
"""
|
||||||
Returns the expectimax action using self.depth and self.evaluationFunction
|
Returns the expectimax action using self.depth and self.evaluationFunction
|
||||||
@ -299,8 +340,9 @@ class ExpectimaxAgent(MultiAgentSearchAgent):
|
|||||||
All ghosts should be modeled as choosing uniformly at random from their
|
All ghosts should be modeled as choosing uniformly at random from their
|
||||||
legal moves.
|
legal moves.
|
||||||
"""
|
"""
|
||||||
"*** YOUR CODE HERE ***"
|
stat = self.ExpectMaxSearch(gameState,self.depth,0)
|
||||||
util.raiseNotDefined()
|
# print(f"stat:{stat}")
|
||||||
|
return stat[1][0]
|
||||||
|
|
||||||
def betterEvaluationFunction(currentGameState: GameState):
|
def betterEvaluationFunction(currentGameState: GameState):
|
||||||
"""
|
"""
|
||||||
|
Reference in New Issue
Block a user