# multiAgents.py # -------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). from util import manhattanDistance from game import Directions, Actions import random, util from game import Agent from pacman import GameState class ReflexAgent(Agent): """ A reflex agent chooses an action at each choice point by examining its alternatives via a state evaluation function. The code below is provided as a guide. You are welcome to change it in any way you see fit, so long as you don't touch our method headers. """ def getAction(self, gameState: GameState): """ You do not need to change this method, but you're welcome to. getAction chooses among the best options according to the evaluation function. Just like in the previous project, getAction takes a GameState and returns some Directions.X for some X in the set {NORTH, SOUTH, WEST, EAST, STOP} """ # Collect legal moves and successor states legalMoves = gameState.getLegalActions() # Choose one of the best actions scores = [self.evaluationFunction(gameState, action) for action in legalMoves] bestScore = max(scores) bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore] chosenIndex = random.choice(bestIndices) # Pick randomly among the best "Add more of your code here if you want to" return legalMoves[chosenIndex] def evaluationFunction(self, currentGameState: GameState, action): """ Design a better evaluation function here. The evaluation function takes in the current and proposed successor GameStates (pacman.py) and returns a number, where higher numbers are better. The code below extracts some useful information from the state, like the remaining food (newFood) and Pacman position after moving (newPos). newScaredTimes holds the number of moves that each ghost will remain scared because of Pacman having eaten a power pellet. Print out these variables to see what you're getting, then combine them to create a masterful evaluation function. """ # Useful information you can extract from a GameState (pacman.py) kInf=1e100 successorGameState = currentGameState.generatePacmanSuccessor(action) new_pos = successorGameState.getPacmanPosition() # newFood = successorGameState.getFood() # new_ghost_states = successorGameState.getGhostStates() new_ghost_positions = successorGameState.getGhostPositions() # newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates] if new_pos in new_ghost_positions: return -kInf capsules_position = currentGameState.getCapsules() food_positions = currentGameState.getFood().asList() action_vec=Actions.directionToVector(action) if action=="Stop": return random.uniform(-0.2,0.2) # print(f"action:{action}, action_vec:{action_vec}") current_ghost_positions = currentGameState.getGhostPositions() current_ghost_scared_times = [ghostState.scaredTimer for ghostState in currentGameState.getGhostStates()] not_scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]==0] scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>0 and current_ghost_scared_times[i]<=1.2*util.manhattanDistance(current_ghost_positions[i],new_pos)+2] edible_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>1.2*util.manhattanDistance(current_ghost_positions[i],new_pos)+2] current_self_position = currentGameState.getPacmanPosition() def DotProduct(a,b): return a[0]*b[0]+a[1]*b[1] def CrossProduct(a,b): return a[0]*b[1]-a[1]*b[0] def EuclideanDistance(a,b): return ((a[0]-b[0])**2+(a[1]-b[1])**2)**0.5 def DistanceAnalysis(current_self_position,object_postion_list,flag="None"): if len(object_postion_list)==0: return 0 if current_self_position in object_postion_list: return kInf res=0 for obj_pos in object_postion_list: if flag=="Ghost" and util.manhattanDistance(current_self_position,obj_pos)>=6: continue vec_to_obj=(obj_pos[0]-current_self_position[0],obj_pos[1]-current_self_position[1]) # print(f"vec_to_obj:{vec_to_obj}") # print(f"action:{action}, action_vec:{action_vec}") # print(f"EuclideanDistance(action_vec,(0,0)):{EuclideanDistance(action_vec,(0,0))}") # print(f"EuclideanDistance(vec_to_obj,(0,0)): {EuclideanDistance(vec_to_obj,(0,0))}") cos_theta=DotProduct(action_vec,vec_to_obj)/(EuclideanDistance(action_vec,(0,0))*EuclideanDistance(vec_to_obj,(0,0))) distance_to_obj=EuclideanDistance(current_self_position,obj_pos) res+=(cos_theta+1)/distance_to_obj return res da_for_foods=DistanceAnalysis(current_self_position,food_positions) if new_pos in currentGameState.getFood().asList(): da_for_foods=200 da_for_unscared_ghosts=DistanceAnalysis(current_self_position,not_scared_ghosts_positions,"Ghost") da_for_scared_ghosts=DistanceAnalysis(current_self_position,scared_ghosts_positions) da_for_capsules=DistanceAnalysis(current_self_position,capsules_position) da_for_edible_ghosts=DistanceAnalysis(current_self_position,edible_ghosts_positions) res=da_for_capsules*2-da_for_unscared_ghosts*2-da_for_scared_ghosts*0.2+da_for_foods*0.2+da_for_edible_ghosts res*=random.uniform(0.9, 1.1) # print(f"res:{res}") return res def scoreEvaluationFunction(currentGameState: GameState): """ This default evaluation function just returns the score of the state. The score is the same one displayed in the Pacman GUI. This evaluation function is meant for use with adversarial search agents (not reflex agents). """ return currentGameState.getScore() class MultiAgentSearchAgent(Agent): """ This class provides some common elements to all of your multi-agent searchers. Any methods defined here will be available to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent. You *do not* need to make any changes here, but you can if you want to add functionality to all your adversarial search agents. Please do not remove anything, however. Note: this is an abstract class: one that should not be instantiated. It's only partially specified, and designed to be extended. Agent (game.py) is another abstract class. """ def __init__(self, evalFn = 'scoreEvaluationFunction', depth = '2'): self.index = 0 # Pacman is always agent index 0 self.evaluationFunction = util.lookup(evalFn, globals()) self.depth = int(depth) class MinimaxAgent(MultiAgentSearchAgent): """ Your minimax agent (question 2) """ def MinMaxSearch(self,gameState: GameState,depth_remain:int,agentIndex:int) -> tuple[int, list[Actions]]: if depth_remain==0: # print(f"depth_remain:{depth_remain}") # print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}") return self.evaluationFunction(gameState),[] legal_actions = gameState.getLegalActions(agentIndex) if len(legal_actions)==0: # print(f"depth_remain:{depth_remain}") # print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}") return self.evaluationFunction(gameState),[] kInf=1e100 res_action=[] res_val=0 if agentIndex==0: # Max res_val = -kInf for action in legal_actions: successorGameState = gameState.generateSuccessor(agentIndex,action) nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain val,action_list=self.MinMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents()) if val>res_val: res_val=val # print(f"action:{action}, action_list:{action_list}") res_action=[action]+action_list else: # Mins res_val = kInf for action in legal_actions: successorGameState = gameState.generateSuccessor(agentIndex,action) nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain val,action_list=self.MinMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents()) if val= 1 gameState.generateSuccessor(agentIndex, action): Returns the successor game state after an agent takes an action gameState.getNumAgents(): Returns the total number of agents in the game gameState.isWin(): Returns whether or not the game state is a winning state gameState.isLose(): Returns whether or not the game state is a losing state """ stat = self.MinMaxSearch(gameState,self.depth,0) # print(f"stat:{stat}") return stat[1][0] class AlphaBetaAgent(MultiAgentSearchAgent): """ Your minimax agent with alpha-beta pruning (question 3) """ def AlphaBetaSearch(self,gameState: GameState,alpha,beta,depth_remain:int,agentIndex:int) -> tuple[int, list[Actions]]: if alpha>beta: raise ValueError("alpha should be less than beta") legal_actions = gameState.getLegalActions(agentIndex) if len(legal_actions)==0: # print(f"depth_remain: leaf {depth_remain}, alpha:{alpha}, beta:{beta}") # print(f"returning {self.evaluationFunction(gameState)}, {[]}") return self.evaluationFunction(gameState),[] if depth_remain==0: # print(f"depth_remain: leaf {depth_remain}, alpha:{alpha}, beta:{beta}") # print(f"returning {self.evaluationFunction(gameState)}, {[]}") return self.evaluationFunction(gameState),[] res_action=[] res_val=0 kInf=1e100 if agentIndex==0: # Max res_val = -kInf for action in legal_actions: successorGameState = gameState.generateSuccessor(agentIndex,action) nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain val,action_list=self.AlphaBetaSearch(successorGameState,alpha,beta,nxt_depth,(agentIndex+1)%gameState.getNumAgents()) alpha=max(alpha,val) # print(f"now alpha:{alpha}, beta:{beta}") if val>res_val: res_val=val # print(f"action:{action}, action_list:{action_list}") res_action=[action]+action_list if val>beta: break else: # Mins res_val = kInf for action in legal_actions: successorGameState = gameState.generateSuccessor(agentIndex,action) nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain val,action_list=self.AlphaBetaSearch(successorGameState,alpha,beta,nxt_depth,(agentIndex+1)%gameState.getNumAgents()) beta=min(beta,val) # print(f"now alpha:{alpha}, beta:{beta}") if valval: break # print(f"depth_remain:{depth_remain}, alpha:{alpha}, beta:{beta}") # print(f"returning {res_val}, {res_action}") return res_val,res_action def getAction(self, gameState: GameState): """ Returns the minimax action using self.depth and self.evaluationFunction """ kInf=1e100 stat = self.AlphaBetaSearch(gameState,-kInf,kInf,self.depth,0) # print(f"stat:{stat}") return stat[1][0] last_score=0 class ExpectimaxAgent(MultiAgentSearchAgent): """ Your expectimax agent (question 4) """ def ExpectMaxSearch(self,gameState: GameState,depth_remain:int,agentIndex:int) -> tuple[int, list[Actions]]: if depth_remain==0: # print(f"depth_remain:{depth_remain}") # print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}") return self.evaluationFunction(gameState),[] legal_actions = gameState.getLegalActions(agentIndex) if len(legal_actions)==0: # print(f"depth_remain:{depth_remain}") # print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}") return self.evaluationFunction(gameState),[] kInf=1e100 res_action=[] res_val=0 if agentIndex==0: # Max res_val = -kInf for action in legal_actions: successorGameState = gameState.generateSuccessor(agentIndex,action) nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents()) if action=="Stop": val-=100 if val>res_val: res_val=val # print(f"action:{action}, action_list:{action_list}") res_action=[action]+action_list else: # Mins res_val = kInf val_list=[] for action in legal_actions: successorGameState = gameState.generateSuccessor(agentIndex,action) nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents()) val_list.append(val) if val """ # Useful information you can extract from a GameState (pacman.py) if currentGameState.isLose(): return -500 if currentGameState.isWin(): return 500 kInf=1e100 capsules_position = currentGameState.getCapsules() current_pos = currentGameState.getPacmanPosition() food_positions = currentGameState.getFood().asList() # print(f"action:{action}, action_vec:{action_vec}") current_ghost_positions = currentGameState.getGhostPositions() current_ghost_scared_times = [ghostState.scaredTimer for ghostState in currentGameState.getGhostStates()] not_scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]==0] scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>0 and current_ghost_scared_times[i]<=1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2] edible_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2] current_self_position = currentGameState.getPacmanPosition() def DotProduct(a,b): return a[0]*b[0]+a[1]*b[1] def CrossProduct(a,b): return a[0]*b[1]-a[1]*b[0] def EuclideanDistance(a,b): return ((a[0]-b[0])**2+(a[1]-b[1])**2)**0.5 def DistanceAnalysis(current_self_position,object_postion_list,flag="None"): if len(object_postion_list)==0: return 0 if current_self_position in object_postion_list: return kInf res=0 for obj_pos in object_postion_list: if flag=="Ghost" and util.manhattanDistance(current_self_position,obj_pos)>=6: continue distance_to_obj=util.manhattanDistance(current_self_position,obj_pos) res=max(res,1/distance_to_obj) return res da_for_foods=DistanceAnalysis(current_self_position,food_positions) da_for_unscared_ghosts=DistanceAnalysis(current_self_position,not_scared_ghosts_positions,"Ghost") da_for_scared_ghosts=DistanceAnalysis(current_self_position,scared_ghosts_positions) da_for_capsules=DistanceAnalysis(current_self_position,capsules_position) da_for_edible_ghosts=DistanceAnalysis(current_self_position,edible_ghosts_positions) res=da_for_capsules*2-da_for_unscared_ghosts*2-da_for_scared_ghosts*0.2+da_for_foods*0.2+da_for_edible_ghosts*1 if da_for_unscared_ghosts<1/6: res+=(da_for_foods*0.2+da_for_edible_ghosts*1)*5 # res*=random.uniform(0.9, 1.1) res*=100 global last_score res+=(currentGameState.getScore()-last_score)*10 # print(f"res:{res}") return res # Abbreviation better = betterEvaluationFunction