class: "OutputTest" success: "PASS" failure: "NO PASS" # Python statements initializing variables for the test below. preamble: """ import inference dist = inference.DiscreteDistribution() dist['a'] = 1 dist['b'] = 2 dist['c'] = 2 dist['d'] = 0 dist['e'] = 1 N = 100000.0 samples = [dist.sample() for _ in range(int(N))] ans1 = round(samples.count('a') * 1.0/N, 2) ans2 = round(samples.count('b') * 1.0/N, 2) ans3 = round(samples.count('c') * 1.0/N, 2) ans4 = round(samples.count('d') * 1.0/N, 2) ans5 = round(samples.count('e') * 1.0/N, 2) ans = map(float, [ans1, ans2, ans3, ans4, ans5]) """ # A python expression to be evaluated. This expression must return the # same result for the student and instructor's code. test: "ans"