# logicAgents.py # -------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). """ This file contains all of the agents that can be selected to control Pacman. To select an agent, use the '-p' option when running pacman.py. Arguments can be passed to your agent using '-a'. For example, to load a LogicAgent that uses logicPlan.positionLogicPlan, run the following command: > python pacman.py -p LogicAgent -a fn=positionLogicPlan Commands to invoke other planning methods can be found in the project description. You should NOT change code in this file Good luck and happy planning! """ from game import Directions from game import Agent from game import Actions from game import Grid from graphicsUtils import * import graphicsDisplay import util import time import warnings import logicPlan import random class GoWestAgent(Agent): "An agent that goes West until it can't." def getAction(self, state): "The agent receives a GameState (defined in pacman.py)." if Directions.WEST in state.getLegalPacmanActions(): return Directions.WEST else: return Directions.STOP ####################################################### # This portion is written for you, but will only work # # after you fill in parts of logicPlan.py # ####################################################### class LogicAgent(Agent): """ This very general logic agent finds a path using a supplied planning algorithm for a supplied planning problem, then returns actions to follow that path. As a default, this agent runs positionLogicPlan on a PositionPlanningProblem to find location (1,1) Options for fn include: positionLogicPlan or plp foodLogicPlan or flp foodGhostLogicPlan or fglp Note: You should NOT change any code in LogicAgent """ def __init__(self, fn='positionLogicPlan', prob='PositionPlanningProblem', plan_mod=logicPlan): # Warning: some advanced Python magic is employed below to find the right functions and problems # Get the planning function from the name and heuristic if fn not in dir(plan_mod): raise AttributeError(fn + ' is not a planning function in logicPlan.py.') func = getattr(plan_mod, fn) self.planningFunction = lambda x: func(x) # Get the planning problem type from the name if prob not in globals().keys() or not prob.endswith('Problem'): raise AttributeError(prob + ' is not a planning problem type in logicAgents.py.') self.planType = globals()[prob] self.live_checking = False print('[LogicAgent] using problem type ' + prob) def registerInitialState(self, state): """ This is the first time that the agent sees the layout of the game board. Here, we choose a path to the goal. In this phase, the agent should compute the path to the goal and store it in a local variable. All of the work is done in this method! state: a GameState object (pacman.py) """ if self.planningFunction == None: raise Exception("No planning function provided for LogicAgent") starttime = time.time() problem = self.planType(state) # Makes a new planning problem self.actions = [] # In case planningFunction times out self.actions = self.planningFunction(problem) # Find a path if self.actions == None: raise Exception('Studenct code supplied None instead of result') totalCost = problem.getCostOfActions(self.actions) print('Path found with total cost of %d in %.1f seconds' % (totalCost, time.time() - starttime)) # TODO Drop if '_expanded' in dir(problem): print('Nodes expanded: %d' % problem._expanded) def getAction(self, state): """ Returns the next action in the path chosen earlier (in registerInitialState). Return Directions.STOP if there is no further action to take. state: a GameState object (pacman.py) """ # import ipdb; ipdb.set_trace() if 'actionIndex' not in dir(self): self.actionIndex = 0 i = self.actionIndex self.actionIndex += 1 if i < len(self.actions): return self.actions[i] else: print('Oh no! The Pacman agent created a plan that was too short!') print() return None # return Directions.STOP class CheckSatisfiabilityAgent(LogicAgent): def __init__(self, fn='checkLocationSatisfiability', prob='LocMapProblem', plan_mod=logicPlan): # Warning: some advanced Python magic is employed below to find the right functions and problems # Get the planning function from the name and heuristic if fn not in dir(plan_mod): raise AttributeError(fn + ' is not a planning function in logicPlan.py.') func = getattr(plan_mod, fn) self.planningFunction = lambda x: func(*x) # Get the planning problem type from the name if prob not in globals().keys() or not prob.endswith('Problem'): raise AttributeError(prob + ' is not a planning problem type in logicAgents.py.') self.planType = globals()[prob] print('[LogicAgent] using problem type ' + prob) self.live_checking = False def registerInitialState(self, state): if self.planningFunction == None: raise Exception("No planning function provided for LogicAgent") starttime = time.time() self.problem = self.planType(state) # Makes a new planning problem def getAction(self, state): return "EndGame" class LocalizeMapAgent(LogicAgent): """Parent class for localization, mapping, and slam""" def __init__(self, fn='positionLogicPlan', prob='LocMapProblem', plan_mod=logicPlan, display=None, scripted_actions=[]): # Warning: some advanced Python magic is employed below to find the right functions and problems # Get the planning function from the name and heuristic if fn not in dir(plan_mod): raise AttributeError(fn + ' is not a planning function in logicPlan.py.') func = getattr(plan_mod, fn) self.planningFunction = lambda x, y: func(x, y) # Get the planning problem type from the name if prob not in globals().keys() or not prob.endswith('Problem'): raise AttributeError(prob + ' is not a planning problem type in logicAgents.py.') self.planType = globals()[prob] print('[LogicAgent] using problem type ' + prob) self.visited_states = [] self.display = display self.scripted_actions = scripted_actions self.live_checking = True def resetLocation(self): self.visited_states = [] self.state = self.problem.getStartState() self.visited_states.append(self.state) def addNoOp_t0(self): self.visited_states = [self.visited_states[0]] + list(self.visited_states) self.actions.insert(0, "Stop") def registerInitialState(self, state): """ This is the first time that the agent sees the layout of the game board. Here, we choose a path to the goal. In this phase, the agent should compute the path to the goal and store it in a local variable. All of the work is done in this method! state: a GameState object (pacman.py) """ if self.planningFunction == None: raise Exception("No planning function provided for LogicAgent") starttime = time.time() problem = self.planType(state) # Makes a new planning problem self.problem = problem self.state = self.problem.getStartState() self.actions = self.scripted_actions self.resetLocation() self.planning_fn_output = self.planningFunction(problem, self) # self.addNoOp_t0() def get_known_walls_non_walls_from_known_map(self, known_map): # map is 1 for known wall, 0 for if known_map == None: raise Exception('Student code supplied None instead of a 2D known map') known_walls = [[(True if entry==1 else False) for entry in row] for row in known_map] known_non_walls = [[(True if entry==0 else False) for entry in row] for row in known_map] return known_walls, known_non_walls class LocalizationLogicAgent(LocalizeMapAgent): def __init__(self, fn='localization', prob='LocalizationProblem', plan_mod=logicPlan, display=None, scripted_actions=[]): super(LocalizationLogicAgent, self).__init__(fn, prob, plan_mod, display, scripted_actions) self.num_timesteps = len(scripted_actions) if scripted_actions else 5 def getAction(self, state): """ Returns the next action in the path chosen earlier (in registerInitialState). Return Directions.STOP if there is no further action to take. state: a GameState object (pacman.py) """ # import ipdb; ipdb.set_trace() if 'actionIndex' not in dir(self): self.actionIndex = 0 i = self.actionIndex self.actionIndex += 1 planning_fn_output = None if i < self.num_timesteps: proposed_action = self.actions[i] planning_fn_output = next(self.planning_fn_output) if planning_fn_output == None: raise Exception('Studenct code supplied None instead of result') if isinstance(self.display, graphicsDisplay.PacmanGraphics): self.drawPossibleStates(planning_fn_output, direction=self.actions[i]) elif i < len(self.actions): proposed_action = self.actions[i] else: proposed_action = "EndGame" return proposed_action, planning_fn_output def moveToNextState(self, action): oldX, oldY = self.state dx, dy = Actions.directionToVector(action) x, y = int(oldX + dx), int(oldY + dy) if self.problem.walls[x][y]: raise AssertionError("Taking an action that goes into wall") pass else: self.state = (x, y) self.visited_states.append(self.state) def getPercepts(self): x, y = self.state north_iswall = self.problem.walls[x][y+1] south_iswall = self.problem.walls[x][y-1] east_iswall = self.problem.walls[x+1][y] west_iswall = self.problem.walls[x-1][y] return [north_iswall, south_iswall, east_iswall, west_iswall] def getValidActions(self): x, y = self.state actions = [] if not self.problem.walls[x][y+1]: actions.append('North') if not self.problem.walls[x][y-1]: actions.append('South') if not self.problem.walls[x+1][y]: actions.append('East') if not self.problem.walls[x-1][y]: actions.append('West') return actions def drawPossibleStates(self, possibleLocations=None, direction="North", pacman_position=None): import __main__ self.display.clearExpandedCells() # Erase previous colors self.display.colorCircleCells(possibleLocations, direction=direction, pacman_position=pacman_position) class MappingLogicAgent(LocalizeMapAgent): def __init__(self, fn='mapping', prob='MappingProblem', plan_mod=logicPlan, display=None, scripted_actions=[]): super(MappingLogicAgent, self).__init__(fn, prob, plan_mod, display, scripted_actions) self.num_timesteps = len(scripted_actions) if scripted_actions else 10 def getAction(self, state): """ Returns the next action in the path chosen earlier (in registerInitialState). Return Directions.STOP if there is no further action to take. state: a GameState object (pacman.py) """ if 'actionIndex' not in dir(self): self.actionIndex = 0 i = self.actionIndex self.actionIndex += 1 planning_fn_output = None if i < self.num_timesteps: proposed_action = self.actions[i] planning_fn_output = next(self.planning_fn_output) if isinstance(self.display, graphicsDisplay.PacmanGraphics): self.drawWallBeliefs(planning_fn_output, self.actions[i], self.visited_states[:i]) elif i < len(self.actions): proposed_action = self.actions[i] else: proposed_action = "EndGame" return proposed_action, planning_fn_output def moveToNextState(self, action): oldX, oldY = self.state dx, dy = Actions.directionToVector(action) x, y = int(oldX + dx), int(oldY + dy) if self.problem.walls[x][y]: raise AssertionError("Taking an action that goes into wall") pass else: self.state = (x, y) self.visited_states.append(self.state) def getPercepts(self): x, y = self.state north_iswall = self.problem.walls[x][y+1] south_iswall = self.problem.walls[x][y-1] east_iswall = self.problem.walls[x+1][y] west_iswall = self.problem.walls[x-1][y] return [north_iswall, south_iswall, east_iswall, west_iswall] def getValidActions(self): x, y = self.state actions = [] if not self.problem.walls[x][y+1]: actions.append('North') if not self.problem.walls[x][y-1]: actions.append('South') if not self.problem.walls[x+1][y]: actions.append('East') if not self.problem.walls[x-1][y]: actions.append('West') return actions def drawWallBeliefs(self, known_map=None, direction="North", visited_states_to_render=[]): import random import __main__ from graphicsUtils import draw_background, refresh known_walls, known_non_walls = self.get_known_walls_non_walls_from_known_map(known_map) wallGrid = Grid(self.problem.walls.width, self.problem.walls.height, initialValue=False) wallGrid.data = known_walls allTrueWallGrid = Grid(self.problem.walls.width, self.problem.walls.height, initialValue=True) self.display.clearExpandedCells() # Erase previous colors self.display.drawWalls(wallGrid, formatColor(.9,0,0), allTrueWallGrid) refresh() class SLAMLogicAgent(LocalizeMapAgent): def __init__(self, fn='slam', prob='SLAMProblem', plan_mod=logicPlan, display=None, scripted_actions=[]): super(SLAMLogicAgent, self).__init__(fn, prob, plan_mod, display, scripted_actions) self.scripted_actions = scripted_actions self.num_timesteps = len(self.scripted_actions) if self.scripted_actions else 10 self.live_checking = True def getAction(self, state): """ Returns the next action in the path chosen earlier (in registerInitialState). Return Directions.STOP if there is no further action to take. state: a GameState object (pacman.py) """ # import ipdb; ipdb.set_trace() if 'actionIndex' not in dir(self): self.actionIndex = 0 i = self.actionIndex self.actionIndex += 1 pacman_loc = self.visited_states[i] planning_fn_output = None if i < self.num_timesteps: proposed_action = self.actions[i] planning_fn_output = next(self.planning_fn_output) if planning_fn_output == None: raise Exception('Studenct code supplied None instead of result') if isinstance(self.display, graphicsDisplay.PacmanGraphics): self.drawWallandPositionBeliefs( known_map=planning_fn_output[0], possibleLocations=planning_fn_output[1], direction=self.actions[i]) elif i < len(self.actions): proposed_action = self.actions[i] else: proposed_action = "EndGame" # SLAM needs to handle illegal actions if proposed_action not in self.getValidActions(pacman_loc) and proposed_action not in ["Stop", "EndGame"]: proposed_action = "Stop" return proposed_action, planning_fn_output def moveToNextState(self, action): oldX, oldY = self.state dx, dy = Actions.directionToVector(action) x, y = int(oldX + dx), int(oldY + dy) if self.problem.walls[x][y]: # raise AssertionError("Taking an action that goes into wall") pass else: self.state = (x, y) self.visited_states.append(self.state) def getPercepts(self): x, y = self.state north_iswall = self.problem.walls[x][y+1] south_iswall = self.problem.walls[x][y-1] east_iswall = self.problem.walls[x+1][y] west_iswall = self.problem.walls[x-1][y] num_adj_walls = sum([north_iswall, south_iswall, east_iswall, west_iswall]) # percept format: [adj_to_>=1_wall, adj_to_>=2_wall, adj_to_>=3_wall] percept = [num_adj_walls >= i for i in range(1, 4)] return percept def getValidActions(self, state=None): if not state: state = self.state x, y = state actions = [] if not self.problem.walls[x][y+1]: actions.append('North') if not self.problem.walls[x][y-1]: actions.append('South') if not self.problem.walls[x+1][y]: actions.append('East') if not self.problem.walls[x-1][y]: actions.append('West') return actions def drawWallandPositionBeliefs(self, known_map=None, possibleLocations=None, direction="North", visited_states_to_render=[], pacman_position=None): import random import __main__ from graphicsUtils import draw_background, refresh known_walls, known_non_walls = self.get_known_walls_non_walls_from_known_map(known_map) wallGrid = Grid(self.problem.walls.width, self.problem.walls.height, initialValue=False) wallGrid.data = known_walls allTrueWallGrid = Grid(self.problem.walls.width, self.problem.walls.height, initialValue=True) # Recover list of non-wall coords: non_wall_coords = [] for x in range(len(known_non_walls)): for y in range(len(known_non_walls[x])): if known_non_walls[x][y] == 1: non_wall_coords.append((x, y)) self.display.clearExpandedCells() # Erase previous colors self.display.drawWalls(wallGrid, formatColor(.9,0,0), allTrueWallGrid) self.display.colorCircleSquareCells(possibleLocations, square_cells=non_wall_coords, direction=direction, pacman_position=pacman_position) refresh() class PositionPlanningProblem(logicPlan.PlanningProblem): """ A planning problem defines the state space, start state, goal test, successor function and cost function. This planning problem can be used to find paths to a particular point on the pacman board. The state space consists of (x,y) positions in a pacman game. Note: this planning problem is fully specified; you should NOT change it. """ def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True): """ Stores the start and goal. gameState: A GameState object (pacman.py) costFn: A function from a planning state (tuple) to a non-negative number goal: A position in the gameState """ self.walls = gameState.getWalls() self.startState = gameState.getPacmanPosition() if start != None: self.startState = start self.goal = goal self.costFn = costFn self.visualize = visualize if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)): print('Warning: this does not look like a regular position planning maze') # For display purposes self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE def getStartState(self): return self.startState def getGoalState(self): return self.goal def getCostOfActions(self, actions): """ Returns the cost of a particular sequence of actions. If those actions include an illegal move, return 999999. This is included in the logic project solely for autograding purposes. You should not be calling it. """ if actions == None: return 999999 x,y= self.getStartState() cost = 0 for action in actions: # Check figure out the next state and see whether it's legal dx, dy = Actions.directionToVector(action) x, y = int(x + dx), int(y + dy) if self.walls[x][y]: return 999999 cost += self.costFn((x,y)) return cost def getWidth(self): """ Returns the width of the playable grid (does not include the external wall) Possible x positions for agents will be in range [1,width] """ return self.walls.width-2 def getHeight(self): """ Returns the height of the playable grid (does not include the external wall) Possible y positions for agents will be in range [1,height] """ return self.walls.height-2 def manhattanHeuristic(position, problem, info={}): "The Manhattan distance heuristic for a PositionPlanningProblem" xy1 = position xy2 = problem.goal return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1]) def euclideanHeuristic(position, problem, info={}): "The Euclidean distance heuristic for a PositionPlanningProblem" xy1 = position xy2 = problem.goal return ( (xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2 ) ** 0.5 class LocMapProblem: """Parent class for Localization, Mapping, and SLAM.""" def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True): self.walls = gameState.getWalls() self.startState = gameState.getPacmanPosition() if start != None: self.startState = start self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE def getStartState(self): return self.startState def getWidth(self): """ Returns the width of the playable grid (does not include the external wall) Possible x positions for agents will be in range [1,width] """ return self.walls.width-2 def getHeight(self): """ Returns the height of the playable grid (does not include the external wall) Possible y positions for agents will be in range [1,height] """ return self.walls.height-2 class LocalizationProblem(LocMapProblem): pass class MappingProblem(LocMapProblem): pass class SLAMProblem(LocMapProblem): pass class FoodPlanningProblem: """ A planning problem associated with finding the a path that collects all of the food (dots) in a Pacman game. A planning state in this problem is a tuple ( pacmanPosition, foodGrid ) where pacmanPosition: a tuple (x,y) of integers specifying Pacman's position foodGrid: a Grid (see game.py) of either True or False, specifying remaining food """ def __init__(self, startingGameState): self.start = (startingGameState.getPacmanPosition(), startingGameState.getFood()) self.walls = startingGameState.getWalls() self.startingGameState = startingGameState self._expanded = 0 # DO NOT CHANGE self.heuristicInfo = {} # A dictionary for the heuristic to store information def getStartState(self): return self.start def getCostOfActions(self, actions): """Returns the cost of a particular sequence of actions. If those actions include an illegal move, return 999999. This is included in the logic project solely for autograding purposes. You should not be calling it. """ x,y= self.getStartState()[0] cost = 0 for action in actions: # figure out the next state and see whether it's legal dx, dy = Actions.directionToVector(action) x, y = int(x + dx), int(y + dy) if self.walls[x][y]: return 999999 cost += 1 return cost def getWidth(self): """ Returns the width of the playable grid (does not include the external wall) Possible x positions for agents will be in range [1,width] """ return self.walls.width-2 def getHeight(self): """ Returns the height of the playable grid (does not include the external wall) Possible y positions for agents will be in range [1,height] """ return self.walls.height-2