# search.py # --------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). """ In search.py, you will implement generic search algorithms which are called by Pacman agents (in searchAgents.py). """ import util class SearchProblem: """ This class outlines the structure of a search problem, but doesn't implement any of the methods (in object-oriented terminology: an abstract class). You do not need to change anything in this class, ever. """ def getStartState(self): """ Returns the start state for the search problem. """ util.raiseNotDefined() def isGoalState(self, state): """ state: Search state Returns True if and only if the state is a valid goal state. """ util.raiseNotDefined() def getSuccessors(self, state): """ state: Search state For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor. """ util.raiseNotDefined() def getCostOfActions(self, actions): """ actions: A list of actions to take This method returns the total cost of a particular sequence of actions. The sequence must be composed of legal moves. """ util.raiseNotDefined() def tinyMazeSearch(problem): """ Returns a sequence of moves that solves tinyMaze. For any other maze, the sequence of moves will be incorrect, so only use this for tinyMaze. """ from game import Directions s = Directions.SOUTH w = Directions.WEST return [s, s, w, s, w, w, s, w] def depthFirstSearch(problem: SearchProblem): """ Search the deepest nodes in the search tree first. Your search algorithm needs to return a list of actions that reaches the goal. Make sure to implement a graph search algorithm. To get started, you might want to try some of these simple commands to understand the search problem that is being passed in: print("Start:", problem.getStartState()) print("Is the start a goal?", problem.isGoalState(problem.getStartState())) print("Start's successors:", problem.getSuccessors(problem.getStartState())) """ # print("Start:", problem.getStartState()) # print("Is the start a goal?", problem.isGoalState(problem.getStartState())) # print("Start's successors:", problem.getSuccessors(problem.getStartState())) action_list=[] # action_list=["South", "South", "West", "South", "West", "West", "South", "West"] vis_stk=util.Stack() has_visited={} vis_stk.push(problem.getStartState()) # print(f'push {problem.getStartState()}') has_visited[problem.getStartState()]=True nex_idx={} nex_idx[problem.getStartState()]=0 best_actions={} best_actions[problem.getStartState()]=[] stored_successors={} def SafelyFetchSuccessors(problem,stored_successors,state): if state in stored_successors: return stored_successors[state] else: stored_successors[state]=problem.getSuccessors(state) return stored_successors[state] while True: if vis_stk.isEmpty(): break cur_state=vis_stk.pop() # print(f'pop {cur_state}') cur_actions=best_actions[cur_state] if problem.isGoalState(cur_state): action_list=cur_actions break vis_stk.push(cur_state) # print(f'push {cur_state}') # successors=problem.getSuccessors(cur_state) successors=SafelyFetchSuccessors(problem,stored_successors,cur_state) # print(f"getting successors of {cur_state} with {successors}") while nex_idx[cur_state]>=len(successors): tmp=vis_stk.pop() # print(f'pop {tmp}') if vis_stk.isEmpty(): break cur_state=vis_stk.pop() # print(f'pop {cur_state}') cur_actions=best_actions[cur_state] vis_stk.push(cur_state) # print(f'push {cur_state}') # successors=problem.getSuccessors(cur_state) successors=SafelyFetchSuccessors(problem,stored_successors,cur_state) # print(f'getting successors of {cur_state} with {successors}') if vis_stk.isEmpty(): break next_state,action,_=successors[nex_idx[cur_state]] nex_idx[cur_state]+=1 if next_state not in has_visited: vis_stk.push(next_state) # print(f'push {next_state}') best_actions[next_state]=cur_actions+[action] has_visited[next_state]=True nex_idx[next_state]=0 return action_list def breadthFirstSearch(problem: SearchProblem): """Search the shallowest nodes in the search tree first.""" # print("Start:", problem.getStartState()) # print("Is the start a goal?", problem.isGoalState(problem.getStartState())) # print("Start's successors:", problem.getSuccessors(problem.getStartState())) action_list=[] vis_que=util.Queue() has_visited={} vis_que.push((problem.getStartState(),[])) has_visited[problem.getStartState()]=True while True: if vis_que.isEmpty(): break cur_state, cur_actions=vis_que.pop() if problem.isGoalState(cur_state): action_list=cur_actions break for next_state,action,_ in problem.getSuccessors(cur_state): if next_state not in has_visited: vis_que.push((next_state,cur_actions+[action])) has_visited[next_state]=True return action_list def uniformCostSearch(problem: SearchProblem): """Search the node of least total cost first.""" action_list=[] vis_que=util.PriorityQueue() has_visited={} vis_que.push(problem.getStartState(),0) dis={} dis[problem.getStartState()]=0 best_actions={} best_actions[problem.getStartState()]=[] while True: if vis_que.isEmpty(): break cur_state=vis_que.pop() cur_actions=best_actions[cur_state] # print("cur_state:",cur_state, "cur cost=",dis[cur_state]) if problem.isGoalState(cur_state): action_list=cur_actions # print("minimal cost:",dis[cur_state]) break if not cur_state in has_visited: for next_state,action,cost in problem.getSuccessors(cur_state): # print(f"next_state={next_state}") # print(f"try update {next_state} with cost={dis[cur_state]+cost}") if dis[cur_state]+cost