Files
PPCA-AIPacMan-2024/search/search.py
2024-06-26 01:51:09 +00:00

248 lines
9.2 KiB
Python

# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (successor,
action, stepCost), where 'successor' is a successor to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that successor.
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def depthFirstSearch(problem: SearchProblem):
"""
Search the deepest nodes in the search tree first.
Your search algorithm needs to return a list of actions that reaches the
goal. Make sure to implement a graph search algorithm.
To get started, you might want to try some of these simple commands to
understand the search problem that is being passed in:
print("Start:", problem.getStartState())
print("Is the start a goal?", problem.isGoalState(problem.getStartState()))
print("Start's successors:", problem.getSuccessors(problem.getStartState()))
"""
# print("Start:", problem.getStartState())
# print("Is the start a goal?", problem.isGoalState(problem.getStartState()))
# print("Start's successors:", problem.getSuccessors(problem.getStartState()))
action_list=[]
# action_list=["South", "South", "West", "South", "West", "West", "South", "West"]
vis_stk=util.Stack()
has_visited={}
vis_stk.push(problem.getStartState())
# print(f'push {problem.getStartState()}')
has_visited[problem.getStartState()]=True
nex_idx={}
nex_idx[problem.getStartState()]=0
best_actions={}
best_actions[problem.getStartState()]=[]
stored_successors={}
def SafelyFetchSuccessors(problem,stored_successors,state):
if state in stored_successors:
return stored_successors[state]
else:
stored_successors[state]=problem.getSuccessors(state)
return stored_successors[state]
while True:
if vis_stk.isEmpty():
break
cur_state=vis_stk.pop()
# print(f'pop {cur_state}')
cur_actions=best_actions[cur_state]
if problem.isGoalState(cur_state):
action_list=cur_actions
break
vis_stk.push(cur_state)
# print(f'push {cur_state}')
# successors=problem.getSuccessors(cur_state)
successors=SafelyFetchSuccessors(problem,stored_successors,cur_state)
# print(f"getting successors of {cur_state} with {successors}")
while nex_idx[cur_state]>=len(successors):
tmp=vis_stk.pop()
# print(f'pop {tmp}')
if vis_stk.isEmpty():
break
cur_state=vis_stk.pop()
# print(f'pop {cur_state}')
cur_actions=best_actions[cur_state]
vis_stk.push(cur_state)
# print(f'push {cur_state}')
# successors=problem.getSuccessors(cur_state)
successors=SafelyFetchSuccessors(problem,stored_successors,cur_state)
# print(f'getting successors of {cur_state} with {successors}')
if vis_stk.isEmpty():
break
next_state,action,_=successors[nex_idx[cur_state]]
nex_idx[cur_state]+=1
if next_state not in has_visited:
vis_stk.push(next_state)
# print(f'push {next_state}')
best_actions[next_state]=cur_actions+[action]
has_visited[next_state]=True
nex_idx[next_state]=0
return action_list
def breadthFirstSearch(problem: SearchProblem):
"""Search the shallowest nodes in the search tree first."""
# print("Start:", problem.getStartState())
# print("Is the start a goal?", problem.isGoalState(problem.getStartState()))
# print("Start's successors:", problem.getSuccessors(problem.getStartState()))
action_list=[]
vis_que=util.Queue()
has_visited={}
vis_que.push((problem.getStartState(),[]))
has_visited[problem.getStartState()]=True
while True:
if vis_que.isEmpty():
break
cur_state, cur_actions=vis_que.pop()
if problem.isGoalState(cur_state):
action_list=cur_actions
break
for next_state,action,_ in problem.getSuccessors(cur_state):
if next_state not in has_visited:
vis_que.push((next_state,cur_actions+[action]))
has_visited[next_state]=True
return action_list
def uniformCostSearch(problem: SearchProblem):
"""Search the node of least total cost first."""
action_list=[]
vis_que=util.PriorityQueue()
has_visited={}
vis_que.push(problem.getStartState(),0)
dis={}
dis[problem.getStartState()]=0
best_actions={}
best_actions[problem.getStartState()]=[]
while True:
if vis_que.isEmpty():
break
cur_state=vis_que.pop()
cur_actions=best_actions[cur_state]
# print("cur_state:",cur_state, "cur cost=",dis[cur_state])
if problem.isGoalState(cur_state):
action_list=cur_actions
# print("minimal cost:",dis[cur_state])
break
if not cur_state in has_visited:
for next_state,action,cost in problem.getSuccessors(cur_state):
# print(f"next_state={next_state}")
# print(f"try update {next_state} with cost={dis[cur_state]+cost}")
if dis[cur_state]+cost<dis.get(next_state,1e20):
vis_que.update(next_state,dis[cur_state]+cost)
dis[next_state]=min(dis.get(next_state,1e20),dis[cur_state]+cost)
best_actions[next_state]=cur_actions+[action]
has_visited[cur_state]=True
return action_list
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem: SearchProblem, heuristic=nullHeuristic):
"""Search the node that has the lowest combined cost and heuristic first."""
kInf=1e100
action_list=[]
vis_que=util.PriorityQueue()
has_visited={}
vis_que.push(problem.getStartState(),heuristic(problem.getStartState(),problem))
dis={}
dis[problem.getStartState()]=0
best_actions={}
best_actions[problem.getStartState()]=[]
while True:
if vis_que.isEmpty():
break
cur_state=vis_que.pop()
cur_actions=best_actions[cur_state]
# print("cur_state:",cur_state, "cur cost=",dis[cur_state])
if problem.isGoalState(cur_state):
action_list=cur_actions
# print("minimal cost:",dis[cur_state])
break
if not cur_state in has_visited:
for next_state,action,cost in problem.getSuccessors(cur_state):
# print(f"next_state={next_state}")
# print(f"try update {next_state} with cost={dis[cur_state]+cost}")
if dis[cur_state]+cost<dis.get(next_state,kInf):
vis_que.update(next_state,dis[cur_state]+cost+heuristic(next_state,problem))
dis[next_state]=min(dis.get(next_state,kInf),dis[cur_state]+cost)
best_actions[next_state]=cur_actions+[action]
has_visited[cur_state]=True
return action_list
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch