opt to 2x

This commit is contained in:
2024-07-12 19:44:53 +08:00
parent 2c651ef4c4
commit 0d47785ad5

View File

@ -26,66 +26,89 @@ void naiveSgemm(float *a, float *b, float *c, const int M, const int N,
}
}
const int TILE_SIZE = 32;
/**
* @brief Optimized implementation of matrix multiplication on GPU using shared memory.
* Perform C = A * B, where A is M x K, B is K x N, and C is M x N.
*/
__global__ void ZYMSgemm2D(float *a, float *b, float *c, const int M,
template <const int BM, const int BN, const int BK, const int TM, const int TN>
__global__ void __launch_bounds__((BM * BN) / (TM * TN), 1) ZYMSgemm2D(const float *a,const float *b, float *c, const int M,
const int N, const int K) {
// Shared memory for submatrices of A and B
__shared__ float As[TILE_SIZE][TILE_SIZE];
__shared__ float Bs[TILE_SIZE][TILE_SIZE];
// Calculate row and column index of the element
int row = blockIdx.y * TILE_SIZE + threadIdx.y;
int col = blockIdx.x * TILE_SIZE + threadIdx.x;
// Accumulator for the result
float value = 0.0f;
// Loop over all the tiles
for (int t = 0; t < (K + TILE_SIZE - 1) / TILE_SIZE; ++t) {
// Load the tile elements into shared memory
if (row < M && (t * TILE_SIZE + threadIdx.x) < K) {
As[threadIdx.y][threadIdx.x] = a[row * K + t * TILE_SIZE + threadIdx.x];
} else {
As[threadIdx.y][threadIdx.x] = 0.0f;
const int block_row = blockIdx.x;
const int block_col = blockIdx.y;
const int elements_per_block = BM * BN;
const int threads_per_block = (BM*BN)/(TM*TN);
assert(blockDim.x == threads_per_block);
const int thread_row = threadIdx.x / (BN/TN);
const int thread_col = threadIdx.x % (BN/TN);
__shared__ float shared_a[BM*BK];
__shared__ float shared_b[BK*BN];
a+=block_row*BM*K;
b+=block_col*BN;
c+=block_row*BM*N+block_col*BN;
const int load_a_col = threadIdx.x % BK;
const int load_a_row = threadIdx.x / BK;
const int load_a_row_stride = threads_per_block / BK;
const int load_b_col = threadIdx.x % BN;
const int load_b_row = threadIdx.x / BN;
const int load_b_row_stride = threads_per_block / BN;
float result_cache[TM*TN]={0.0};
float a_cache[TM]={0.0};
float b_cache[TN]={0.0};
for(int k_idx=0;k_idx<K;k_idx+=BK) {
for(int load_a_offset=0;load_a_offset<BM;load_a_offset+=load_a_row_stride) {
shared_a[(load_a_offset+load_a_row)*BK+load_a_col]=a[(load_a_offset+load_a_row)*K+load_a_col];
}
if (col < N && (t * TILE_SIZE + threadIdx.y) < K) {
Bs[threadIdx.y][threadIdx.x] = b[(t * TILE_SIZE + threadIdx.y) * N + col];
} else {
Bs[threadIdx.y][threadIdx.x] = 0.0f;
for(int load_b_offset=0;load_b_offset<BK;load_b_offset+=load_b_row_stride) {
shared_b[(load_b_offset+load_b_row)*BN+load_b_col]=b[(load_b_offset+load_b_row)*N+load_b_col];
}
// Synchronize to make sure the submatrices are loaded
__syncthreads();
// Multiply the two matrices together
for (int k = 0; k < TILE_SIZE; ++k) {
value += As[threadIdx.y][k] * Bs[k][threadIdx.x];
a+=BK;
b+=BK*N;
for(int dot_idx=0;dot_idx<BK;dot_idx++) {
for(int i=0;i<TM;i++) {
a_cache[i]=shared_a[(thread_row*TM+i)*BK+dot_idx];
}
for(int i=0;i<TN;i++) {
b_cache[i]=shared_b[dot_idx*BN+thread_col*TN+i];
}
for(int i=0;i<TM;i++) {
for(int j=0;j<TN;j++) {
result_cache[i*TN+j]+=a_cache[i]*b_cache[j];
}
}
}
// Synchronize to make sure that the computation is done before loading new tiles
__syncthreads();
}
// Write the result back to the global memory
if (row < M && col < N) {
c[row * N + col] = value;
for(int i=0;i<TM;i++) {
for(int j=0;j<TN;j++) {
c[(thread_row*TM+i)*N+thread_col*TN+j]=result_cache[i*TN+j];
}
}
}
/**
* @brief Launch ZYMSgemm2D kernel.
* @details see https://siboehm.com/articles/22/CUDA-MMM
*/
void launchSgemm2D(float *a, float *b, float *c, const int M, const int N,
void launchSgemm2D(const float *a,const float *b, float *c, const int M, const int N,
const int K) {
dim3 block(TILE_SIZE, TILE_SIZE); // 256 threads per block (16 * 16 = 256)
dim3 grid((M + block.x - 1) / block.x, (N + block.y - 1) / block.y);
ZYMSgemm2D<<<grid, block>>>(a, b, c, M, N, K);
const int BK=8;
const int TM=8;
const int TN=8;
if(M>=128&&N>=128&&K>=128){
const int BM=128;
const int BN=128;
dim3 gridDim((M + BM - 1) / BM, (N + BN - 1) / BN);
dim3 blockDim((BM * BN) / (TM * TN));
ZYMSgemm2D<BM, BN, BK, TM, TN><<<gridDim, blockDim>>>(a, b, c, M, N, K);
}
else{
const int BM=64;
const int BN=64;
dim3 gridDim((M + BM - 1) / BM, (N + BN - 1) / BN);
dim3 blockDim((BM * BN) / (TM * TN));
ZYMSgemm2D<BM, BN, BK, TM, TN><<<gridDim, blockDim>>>(a, b, c, M, N, K);
}
}
void initialize(float *a, float *b, float *c, const int M, const int N,
@ -145,7 +168,7 @@ int main() {
cudaDeviceSynchronize();
end = std::chrono::high_resolution_clock::now();
cudaMemcpy(c, d_c, MAXN * MAXN * sizeof(float), cudaMemcpyDeviceToHost);
printf("d_c[0][0]=%f\n", c[0]);
printf("d_c[108873]=%f\n", c[108873]);
elapsed = end - start;
printf("GPU time: %.3fs\n", elapsed.count());
@ -155,7 +178,7 @@ int main() {
cudaDeviceSynchronize();
end = std::chrono::high_resolution_clock::now();
cudaMemcpy(c, d_c, MAXN * MAXN * sizeof(float), cudaMemcpyDeviceToHost);
printf("d_c[0][0]=%f\n", c[0]);
printf("d_c[108873]=%f\n", c[108873]);
elapsed = end - start;
printf("cuBLAS time: %.3fs\n", elapsed.count());
}