#include #include #include #include #include #include // You may increase this value to test larger matrices // But it will be slow on CPU constexpr int MAXN = 2048; /** * @brief A naive implementation of matrix multiplication on CPU. * Perform C = A * B, where A is M x K, B is K x N, and C is M x N. */ void naiveSgemm(float *a, float *b, float *c, const int M, const int N, const int K) { for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { float sum = 0.0; for (int k = 0; k < K; ++k) { sum += a[m * K + k] * b[k * N + n]; } c[m * N + n] = sum; } } } /** * @brief A naive implementation of matrix multiplication on GPU. * Perform C = A * B, where A is M x K, B is K x N, and C is M x N. */ __global__ void naiveSgemm2D(float *a, float *b, float *c, const int M, const int N, const int K) { int m = blockIdx.x * blockDim.x + threadIdx.x; // Row index int n = blockIdx.y * blockDim.y + threadIdx.y; // Column index if (m < M && n < N) { float sum = 0.0; for (int k = 0; k < K; ++k) { sum += a[m * K + k] * b[k * N + n]; } c[m * N + n] = sum; } } /** * @brief Launch naiveSgemm2D kernel. */ void launchSgemm2D(float *a, float *b, float *c, const int M, const int N, const int K) { dim3 block(16, 16); // 256 threads per block (16 * 16 = 256) dim3 grid((M + block.x - 1) / block.x, (N + block.y - 1) / block.y); naiveSgemm2D<<>>(a, b, c, M, N, K); } void initialize(float *a, float *b, float *c, const int M, const int N, const int K) { auto gen = std::mt19937(2024); auto dis = std::uniform_real_distribution(-1.0, 1.0); for (int i = 0; i < M * K; ++i) { a[i] = dis(gen); } for (int i = 0; i < K * N; ++i) { b[i] = dis(gen); } for (int i = 0; i < M * N; ++i) { c[i] = 0.0; } } /** * @brief Launch sgemm using cuBLAS */ void launchCublasSgemm(float *a, float *b, float *c, const int M, const int N, const int K) { cublasHandle_t handle; cublasCreate(&handle); float alpha = 1.0; float beta = 0.0; cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, M, K, &alpha, b, N, a, K, &beta, c, N); } int main() { float *a, *b, *c; a = new float[MAXN * MAXN]; b = new float[MAXN * MAXN]; c = new float[MAXN * MAXN]; initialize(a, b, c, MAXN, MAXN, MAXN); // ********** CPU ********** auto start = std::chrono::high_resolution_clock::now(); naiveSgemm(a, b, c, MAXN, MAXN, MAXN); auto end = std::chrono::high_resolution_clock::now(); std::chrono::duration elapsed = end - start; printf("CPU time: %.3fs\n", elapsed.count()); float *d_a, *d_b, *d_c; cudaMalloc(&d_a, MAXN * MAXN * sizeof(float)); cudaMalloc(&d_b, MAXN * MAXN * sizeof(float)); cudaMalloc(&d_c, MAXN * MAXN * sizeof(float)); cudaMemcpy(d_a, a, MAXN * MAXN * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_b, b, MAXN * MAXN * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_c, c, MAXN * MAXN * sizeof(float), cudaMemcpyHostToDevice); // ********** GPU ********** start = std::chrono::high_resolution_clock::now(); launchSgemm2D(d_a, d_b, d_c, MAXN, MAXN, MAXN); cudaDeviceSynchronize(); end = std::chrono::high_resolution_clock::now(); elapsed = end - start; printf("GPU time: %.3fs\n", elapsed.count()); // ********** cuBLAS ********** start = std::chrono::high_resolution_clock::now(); launchCublasSgemm(d_a, d_b, d_c, MAXN, MAXN, MAXN); cudaDeviceSynchronize(); end = std::chrono::high_resolution_clock::now(); elapsed = end - start; printf("cuBLAS time: %.3fs\n", elapsed.count()); }