#pragma once #include #include "concept.h" #ifndef CSU_H #include #include #include #include "tools.h" namespace ZYM { const int kROBSize = 32; const int kTotalRegister = 32; struct CentralScheduleUnit_Input { dark::Wire<1> reset; // data from load store queue dark::Wire<6> load_store_queue_emptyspace_receiver; // data from reservation station dark::Wire<6> reservestation_emptyspace_receiver; // data from Memory dark::Wire<2> mem_status_receiver; dark::Wire<5> completed_memins_ROB_index; dark::Wire<32> completed_memins_read_data; // data from LoadStoreQueue dark::Wire<7 + 3 + 1> mem_request_full_ins_id; dark::Wire<4> mem_request_type_input; dark::Wire<32> mem_address_input; dark::Wire<32> mem_data_input; dark::Wire<5> mem_request_ROB_index; // data from alu dark::Wire<2> alu_status_receiver; dark::Wire<5> completed_aluins_ROB_index; dark::Wire<32> completed_aluins_result; dark::Wire<32> completed_alu_resulting_PC; // receive data from register file // dark::Wire<1> rs1_nodep; // dark::Wire<5> rs1_deps; // dark::Wire<1> rs2_nodep; // dark::Wire<5> rs2_deps; }; struct CentralScheduleUnit_Output { dark::Register<1> force_clear_announcer; dark::Register<9> halt_signal; // The highest bit is the marker, and the rest is the exit code dark::Register<1> is_issuing; dark::Register<1> issue_type; // 0: alu, 1: mem dark::Register<5> issue_ROB_index; dark::Register<7 + 3 + 1> full_ins_id; dark::Register<32> full_ins; dark::Register<32> issuing_PC; dark::Register<5> decoded_rd; dark::Register<1> has_decoded_rd; dark::Register<5> decoded_rs1; dark::Register<1> has_decoded_rs1; dark::Register<1> rs1_is_in_ROB; dark::Register<32> rs1_in_ROB_value; dark::Register<5> decoded_rs2; dark::Register<1> has_decoded_rs2; dark::Register<1> rs2_is_in_ROB; dark::Register<32> rs2_in_ROB_value; dark::Register<32> decoded_imm; dark::Register<6> decoded_shamt; dark::Register<1> cache_hit; dark::Register<5> cache_hit_ROB_index; dark::Register<32> cache_hit_data; dark::Register<1> is_committing; dark::Register<5> commit_reg_index; dark::Register<32> commit_reg_value; dark::Register<5> commit_ins_ROB_index; }; struct ROBRecordType { dark::Register<4> state; dark::Register<32> instruction; dark::Register<5> resulting_register_idx; dark::Register<32> resulting_register_value; dark::Register<1> resulting_PC_ready; dark::Register<32> resulting_PC; dark::Register<4> mem_request_type; // see memory.h dark::Register<32> mem_request_addr; dark::Register<32> mem_request_data; }; struct CentralScheduleUnit_Private { dark::Register<32> predicted_PC; dark::Register<1> has_predicted_PC; // jalr may force the CPU to stall dark::Register<32> actual_PC; std::array ROB_records; dark::Register<5> ROB_head; dark::Register<5> ROB_tail; dark::Register<6> ROB_remain_space; dark::Register<1> has_instruction_issued_last_cycle; // to correctly calculate remain space for next cycle in issue a // ins this cycle }; struct CentralScheduleUnit : public dark::Module { private: std::function instruction_fetcher; bool instruction_fetcher_initialized = false; inline uint8_t ReadBit(uint32_t data, int pos) { return (data >> pos) & 1; } inline void WriteBit(uint32_t &data, int pos, uint8_t bit) { data &= ~(1 << pos); data |= bit << pos; } std::tuple, dark::Bit<5>, dark::Bit<1>, dark::Bit<5>, dark::Bit<1>, dark::Bit<5>, dark::Bit<1>, dark::Bit<32>, dark::Bit<6>> Decode(max_size_t ins) { // Decode the instruction dark::Bit<7 + 3 + 1> full_ins_id; dark::Bit<5> decoded_rd; dark::Bit<1> has_decoded_rd; dark::Bit<5> decoded_rs1; dark::Bit<1> has_decoded_rs1; dark::Bit<5> decoded_rs2; dark::Bit<1> has_decoded_rs2; dark::Bit<32> decoded_imm; dark::Bit<6> decoded_shamt; uint8_t opcode = ins & 0x7F; if (opcode == 0b0110011) { // R-type has_decoded_rd = 1; has_decoded_rs1 = 1; has_decoded_rs2 = 1; decoded_rd = ins >> 7 & 0x1F; decoded_rs1 = ins >> 15 & 0x1F; decoded_rs2 = ins >> 20 & 0x1F; uint8_t funct3 = ins >> 12 & 0x7; uint8_t funct7 = ins >> 25 & 0x7F; full_ins_id = opcode | (funct3 << 7) | (((funct7 >> 5) & 1) << 10); } else if (opcode == 0b1100111 || opcode == 0b0000011 || opcode == 0b0010011) { // I-type has_decoded_rd = 1; has_decoded_rs1 = 1; has_decoded_rs2 = 0; decoded_rd = ins >> 7 & 0x1F; decoded_rs1 = ins >> 15 & 0x1F; decoded_imm = ins >> 20; uint32_t sign_bit = ins >> 31; if (sign_bit) { decoded_imm = static_cast(decoded_imm) | 0xFFFFF000; } uint8_t funct3 = ins >> 12 & 0x7; uint8_t funct7 = ins >> 25 & 0x7F; full_ins_id = opcode | (funct3 << 7) | (((funct7 >> 5) & 1) << 10); decoded_shamt = ins >> 20 & 0x3F; } else if (opcode == 0b0100011) { // S-type has_decoded_rd = 0; has_decoded_rs1 = 1; has_decoded_rs2 = 1; decoded_rs1 = (ins >> 15) & 0x1F; decoded_rs2 = (ins >> 20) & 0x1F; decoded_imm = ((ins >> 7) & 0x1F) | ((ins >> 25) << 5); uint32_t sign_bit = ins >> 31; if (sign_bit) { decoded_imm = static_cast(decoded_imm) | 0xFFFFF000; } uint8_t funct3 = ins >> 12 & 0x7; full_ins_id = opcode | (funct3 << 7); } else if (opcode == 0b1100011) { // B-type has_decoded_rd = 0; has_decoded_rs1 = 1; has_decoded_rs2 = 1; decoded_rs1 = (ins >> 15) & 0x1F; decoded_rs2 = (ins >> 20) & 0x1F; decoded_imm = (((ins >> 8) & 0xF) << 1) | (((ins >> 25) & 0x3F) << 5) | (((ins >> 7) & 0x1) << 11) | (((ins >> 31) & 0x1) << 12); uint32_t sign_bit = ins >> 31; if (sign_bit) { decoded_imm = static_cast(decoded_imm) | 0xFFFFE000; } uint8_t funct3 = ins >> 12 & 0x7; full_ins_id = opcode | (funct3 << 7); } else if(opcode==0b0110111) { // U-type has_decoded_rd = 1; has_decoded_rs1 = 0; has_decoded_rs2 = 0; decoded_rd = ins >> 7 & 0x1F; decoded_imm = ins >> 12; full_ins_id = opcode; } else if(opcode==0b1101111) { // J-type has_decoded_rd = 1; has_decoded_rs1 = 0; has_decoded_rs2 = 0; decoded_rd = ins >> 7 & 0x1F; decoded_imm = (ins & 0xFF000) | (((ins >> 20) & 1)<<11) | (((ins >> 21) & 0x3FF)<<1) | ((ins >> 31) << 20); uint32_t sign_bit = ins >> 31; if (sign_bit) { decoded_imm = static_cast(decoded_imm) | 0xFFE00000; } full_ins_id = opcode; } else throw std::runtime_error("Unknown instruction in Decode"); return std::make_tuple(full_ins_id, decoded_rd, has_decoded_rd, decoded_rs1, has_decoded_rs1, decoded_rs2, has_decoded_rs2, decoded_imm, decoded_shamt); } public: CentralScheduleUnit() { ; } void SetInstructionFetcher(std::function fetcher) { if (instruction_fetcher_initialized) throw std::runtime_error("Instruction fetcher has been initialized"); instruction_fetcher = fetcher; instruction_fetcher_initialized = true; } void work() override final { if (bool(reset)) { predicted_PC <= 0; actual_PC <= 0; has_predicted_PC <= 1; ROB_head <= 0; ROB_tail <= 0; ROB_remain_space <= kROBSize; } // STEP1: try to commit and see if we need to rollback // process memory access request from LSQ // listen to the data from Memory and ALU // try to issue and check if we need to stall // provide the potentially missing data for instruction issued last cycle } }; } // namespace ZYM #endif