This commit is contained in:
2024-04-18 18:38:55 +08:00
parent bfcbb1996a
commit 4f8f929242
20 changed files with 3408 additions and 0 deletions

818
ACMOJ-1335.cpp Normal file
View File

@ -0,0 +1,818 @@
#include <iostream>
#ifndef SJTU_VECTOR_HPP
#define SJTU_VECTOR_HPP
#include <climits>
#include <cstddef>
#include <exception>
#include <iterator>
#include <memory>
namespace sjtu {
/**
* a data container like std::vector
* store data in a successive memory and support random access.
*/
template <typename T>
class vector {
static std::allocator<T> alloc;
size_t allocated_length;
size_t current_length;
T *raw_beg, *raw_end;
public:
/**
* you can see RandomAccessIterator at CppReference for help.
*/
class const_iterator;
class iterator {
// The following code is written for the C++ type_traits library.
// Type traits is a C++ feature for describing certain properties of a type.
// For instance, for an iterator, iterator::value_type is the type that the
// iterator points to.
// STL algorithms and containers may use these type_traits (e.g. the
// following typedef) to work properly. In particular, without the following
// code,
// @code{std::sort(iter, iter1);} would not compile.
// See these websites for more information:
// https://en.cppreference.com/w/cpp/header/type_traits
// About value_type:
// https://blog.csdn.net/u014299153/article/details/72419713 About
// iterator_category: https://en.cppreference.com/w/cpp/iterator
friend class vector<T>;
public:
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T *;
using reference = T &;
using iterator_category = std::random_access_iterator_tag;
private:
vector<T> *domain;
T *raw_pointer;
iterator(vector<T> *domain, T *raw_pointer)
: domain(domain), raw_pointer(raw_pointer) {}
public:
/**
* return a new iterator which pointer n-next elements
* as well as operator-
*/
iterator operator+(const int &n) const {
iterator temp = *this;
temp.raw_pointer += n;
return temp;
}
iterator operator-(const int &n) const {
iterator temp = *this;
temp.raw_pointer -= n;
return temp;
}
// return the distance between two iterators,
// if these two iterators point to different vectors, throw
// invaild_iterator.
int operator-(const iterator &rhs) const {
return raw_pointer - rhs.raw_pointer;
}
iterator &operator+=(const int &n) {
raw_pointer += n;
return *this;
}
iterator &operator-=(const int &n) {
raw_pointer -= n;
return *this;
}
/**
* TODO iter++
*/
iterator operator++(int) {
iterator temp = *this;
raw_pointer++;
return temp;
}
/**
* TODO ++iter
*/
iterator &operator++() {
raw_pointer++;
return *this;
}
/**
* TODO iter--
*/
iterator operator--(int) {
iterator temp = *this;
raw_pointer--;
return temp;
}
/**
* TODO --iter
*/
iterator &operator--() {
raw_pointer--;
return *this;
}
/**
* TODO *it
*/
T &operator*() const { return *raw_pointer; }
/**
* a operator to check whether two iterators are same (pointing to the same
* memory address).
*/
bool operator==(const iterator &rhs) const {
return raw_pointer == rhs.raw_pointer;
}
bool operator==(const const_iterator &rhs) const {
return raw_pointer == rhs.raw_pointer;
}
/**
* some other operator for iterator.
*/
bool operator!=(const iterator &rhs) const {
return raw_pointer != rhs.raw_pointer;
}
bool operator!=(const const_iterator &rhs) const {
return raw_pointer != rhs.raw_pointer;
}
};
/**
* TODO
* has same function as iterator, just for a const object.
*/
class const_iterator {
friend class vector<T>;
public:
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T *;
using reference = T &;
using iterator_category = std::random_access_iterator_tag;
private:
const vector<T> *domain;
const T *raw_pointer;
inline const_iterator(const vector<T> *domain, const T *raw_pointer)
: domain(domain), raw_pointer(raw_pointer) {}
public:
/**
* return a new iterator which pointer n-next elements
* as well as operator-
*/
const_iterator operator+(const int &n) const {
const_iterator temp = *this;
temp.raw_pointer += n;
return temp;
}
const_iterator operator-(const int &n) const {
const_iterator temp = *this;
temp.raw_pointer -= n;
return temp;
}
// return the distance between two iterators,
// if these two iterators point to different vectors, throw
// invaild_iterator.
int operator-(const const_iterator &rhs) const {
return raw_pointer - rhs.raw_pointer;
}
const_iterator &operator+=(const int &n) {
raw_pointer += n;
return *this;
}
const_iterator &operator-=(const int &n) {
raw_pointer -= n;
return *this;
}
/**
* TODO iter++
*/
const_iterator operator++(int) {
const_iterator temp = *this;
raw_pointer++;
return temp;
}
/**
* TODO ++iter
*/
const_iterator &operator++() {
raw_pointer++;
return *this;
}
/**
* TODO iter--
*/
const_iterator operator--(int) {
const_iterator temp = *this;
raw_pointer--;
return temp;
}
/**
* TODO --iter
*/
const_iterator &operator--() {
raw_pointer--;
return *this;
}
/**
* TODO *it
*/
const T &operator*() const { return *raw_pointer; }
/**
* a operator to check whether two iterators are same (pointing to the same
* memory address).
*/
bool operator==(const iterator &rhs) const {
return raw_pointer == rhs.raw_pointer;
}
bool operator==(const const_iterator &rhs) const {
return raw_pointer == rhs.raw_pointer;
}
/**
* some other operator for iterator.
*/
bool operator!=(const iterator &rhs) const {
return raw_pointer != rhs.raw_pointer;
}
bool operator!=(const const_iterator &rhs) const {
return raw_pointer != rhs.raw_pointer;
}
};
/**
* TODO Constructs
* At least two: default constructor, copy constructor
*/
vector() {
raw_beg = alloc.allocate(1);
raw_end = raw_beg;
allocated_length = 1;
current_length = 0;
}
vector(const vector &other) {
raw_beg = alloc.allocate(other.allocated_length);
raw_end = raw_beg + other.current_length;
allocated_length = other.allocated_length;
current_length = other.current_length;
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::construct(alloc, raw_beg + i,
other.raw_beg[i]);
}
}
vector(vector &&other) noexcept {
raw_beg = other.raw_beg;
raw_end = other.raw_end;
allocated_length = other.allocated_length;
current_length = other.current_length;
other.raw_beg = nullptr;
other.raw_end = nullptr;
other.allocated_length = 0;
other.current_length = 0;
}
~vector() {
if (raw_beg != nullptr) {
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::destroy(alloc, raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
}
}
/**
* TODO Assignment operator
*/
vector &operator=(const vector &other) {
if (this == &other) return *this;
if (raw_beg != nullptr) {
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::destroy(alloc, raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
}
raw_beg = alloc.allocate(other.allocated_length);
raw_end = raw_beg + other.current_length;
allocated_length = other.allocated_length;
current_length = other.current_length;
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::construct(alloc, raw_beg + i,
other.raw_beg[i]);
}
return *this;
}
vector &operator=(vector &&other) noexcept {
if (this == &other) return *this;
if (raw_beg != nullptr) {
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::destroy(alloc, raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
}
raw_beg = other.raw_beg;
raw_end = other.raw_end;
allocated_length = other.allocated_length;
current_length = other.current_length;
other.raw_beg = nullptr;
other.raw_end = nullptr;
other.allocated_length = 0;
other.current_length = 0;
return *this;
}
/**
* assigns specified element with bounds checking
* throw index_out_of_bound if pos is not in [0, size)
*/
T &at(const size_t &pos) { return raw_beg[pos]; }
const T &at(const size_t &pos) const { return raw_beg[pos]; }
/**
* assigns specified element with bounds checking
* throw index_out_of_bound if pos is not in [0, size)
* !!! Pay attentions
* In STL this operator does not check the boundary but I want you to do.
*/
T &operator[](const size_t &pos) { return raw_beg[pos]; }
const T &operator[](const size_t &pos) const { return raw_beg[pos]; }
/**
* access the first element.
* throw container_is_empty if size == 0
*/
const T &front() const { return raw_beg[0]; }
/**
* access the last element.
* throw container_is_empty if size == 0
*/
const T &back() const { return raw_end[-1]; }
/**
* returns an iterator to the beginning.
*/
iterator begin() { return iterator(this, raw_beg); }
const_iterator cbegin() const { return const_iterator(this, raw_beg); }
/**
* returns an iterator to the end.
*/
iterator end() { return iterator(this, raw_end); }
const_iterator cend() const { return const_iterator(this, raw_end); }
/**
* checks whether the container is empty
*/
bool empty() const { return current_length == 0; }
/**
* returns the number of elements
*/
size_t size() const { return current_length; }
/**
* clears the contents
*/
void clear() {
if (raw_beg != nullptr) {
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::destroy(alloc, raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
}
raw_beg = alloc.allocate(1);
raw_end = raw_beg;
allocated_length = 1;
current_length = 0;
}
/**
* inserts value before pos
* returns an iterator pointing to the inserted value.
*/
iterator insert(iterator pos, const T &value) {
if (current_length == allocated_length) {
size_t new_allocated_length = allocated_length * 2;
T *new_raw_beg = alloc.allocate(new_allocated_length);
pos.raw_pointer = new_raw_beg + (pos.raw_pointer - raw_beg);
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::construct(
alloc, new_raw_beg + i, std::move(raw_beg[i]));
std::allocator_traits<decltype(alloc)>::destroy(alloc, raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
raw_beg = new_raw_beg;
raw_end = raw_beg + current_length;
allocated_length = new_allocated_length;
}
for (T *i = raw_end; i != pos.raw_pointer; --i) {
std::allocator_traits<decltype(alloc)>::construct(alloc, i,
std::move(*(i - 1)));
std::allocator_traits<decltype(alloc)>::destroy(alloc, i - 1);
}
std::allocator_traits<decltype(alloc)>::construct(alloc, pos.raw_pointer,
value);
raw_end++;
current_length++;
return pos;
}
/**
* inserts value at index ind.
* after inserting, this->at(ind) == value
* returns an iterator pointing to the inserted value.
* throw index_out_of_bound if ind > size (in this situation ind can be size
* because after inserting the size will increase 1.)
*/
iterator insert(const size_t &ind, const T &value) {
if (current_length == allocated_length) {
size_t new_allocated_length = allocated_length * 2;
T *new_raw_beg = alloc.allocate(new_allocated_length);
for (size_t i = 0; i < current_length; ++i) {
alloc.construct(new_raw_beg + i, std::move(raw_beg[i]));
alloc.destroy(raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
raw_beg = new_raw_beg;
raw_end = raw_beg + current_length;
allocated_length = new_allocated_length;
}
for (T *i = raw_end; i != raw_beg + ind; --i) {
alloc.construct(i, std::move(*(i - 1)));
alloc.destroy(i - 1);
}
alloc.construct(raw_beg + ind, value);
raw_end++;
current_length++;
return iterator(this, raw_beg + ind);
}
/**
* removes the element at pos.
* return an iterator pointing to the following element.
* If the iterator pos refers the last element, the end() iterator is
* returned.
*/
iterator erase(iterator pos) {
for (T *i = pos.raw_pointer; i != raw_end - 1; ++i) {
std::allocator_traits<decltype(alloc)>::construct(alloc, i,
std::move(*(i + 1)));
std::allocator_traits<decltype(alloc)>::destroy(alloc, i + 1);
}
raw_end--;
current_length--;
if (current_length != 0 && current_length <= allocated_length / 4) {
size_t new_allocated_length = allocated_length / 2;
T *new_raw_beg = alloc.allocate(new_allocated_length);
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::construct(
alloc, new_raw_beg + i, std::move(raw_beg[i]));
std::allocator_traits<decltype(alloc)>::destroy(alloc, raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
raw_beg = new_raw_beg;
raw_end = raw_beg + current_length;
allocated_length = new_allocated_length;
}
return pos;
}
/**
* removes the element with index ind.
* return an iterator pointing to the following element.
* throw index_out_of_bound if ind >= size
*/
iterator erase(const size_t &ind) {
for (T *i = raw_beg + ind; i != raw_end - 1; ++i) {
alloc.construct(i, std::move(*(i + 1)));
alloc.destroy(i + 1);
}
raw_end--;
current_length--;
if (current_length != 0 && current_length <= allocated_length / 4) {
size_t new_allocated_length = allocated_length / 2;
T *new_raw_beg = alloc.allocate(new_allocated_length);
for (size_t i = 0; i < current_length; ++i) {
alloc.construct(new_raw_beg + i, std::move(raw_beg[i]));
alloc.destroy(raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
raw_beg = new_raw_beg;
raw_end = raw_beg + current_length;
allocated_length = new_allocated_length;
}
return iterator(this, raw_beg + ind);
}
/**
* adds an element to the end.
*/
void push_back(const T &value) {
if (current_length == allocated_length) [[unlikely]] {
size_t new_allocated_length = allocated_length * 2;
T *new_raw_beg = alloc.allocate(new_allocated_length);
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::construct(
alloc, new_raw_beg + i, std::move(raw_beg[i]));
std::allocator_traits<decltype(alloc)>::destroy(alloc, raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
raw_beg = new_raw_beg;
raw_end = raw_beg + current_length;
allocated_length = new_allocated_length;
}
std::allocator_traits<decltype(alloc)>::construct(alloc, raw_end, value);
raw_end++;
current_length++;
}
/**
* remove the last element from the end.
* throw container_is_empty if size() == 0
*/
void pop_back() {
std::allocator_traits<decltype(alloc)>::destroy(alloc, raw_end - 1);
raw_end--;
current_length--;
if (current_length != 0 && current_length <= allocated_length / 4)
[[unlikely]] {
size_t new_allocated_length = allocated_length / 2;
T *new_raw_beg = alloc.allocate(new_allocated_length);
for (size_t i = 0; i < current_length; ++i) {
std::allocator_traits<decltype(alloc)>::construct(
alloc, new_raw_beg + i, std::move(raw_beg[i]));
std::allocator_traits<decltype(alloc)>::destroy(alloc, raw_beg + i);
}
alloc.deallocate(raw_beg, allocated_length);
raw_beg = new_raw_beg;
raw_end = raw_beg + current_length;
allocated_length = new_allocated_length;
}
}
};
template <typename T>
std::allocator<T> vector<T>::alloc;
} // namespace sjtu
#endif
typedef unsigned long long hash_t;
static inline hash_t Hash(std::string str) noexcept {
/* Reference: http://xorshift.di.unimi.it/splitmix64.c */
static const std::string salt1 = "23af0j29d";
static const std::string salt2 = "09dkl020";
constexpr static char inner_salt[17] = "si9aW@zl#2$3%4^!";
str = salt1 + str + salt2;
hash_t ret = 0;
int i = 0;
for (; i + 8 <= str.length(); i += 8) {
ret ^= *reinterpret_cast<const hash_t *>(str.c_str() + i);
ret ^= *reinterpret_cast<const hash_t *>(inner_salt + (i & 15));
ret += 0x9e3779b97f4a7c15;
ret = (ret ^ (ret >> 30)) * 0xbf58476d1ce4e5b9;
ret = (ret ^ (ret >> 27)) * 0x94d049bb133111eb;
ret ^= ret >> 31;
}
for (; i < str.length(); ++i) {
ret ^= str[i];
ret ^= inner_salt[i & 15];
ret += 0x9e3779b97f4a7c15;
ret = (ret ^ (ret >> 30)) * 0xbf58476d1ce4e5b9;
ret = (ret ^ (ret >> 27)) * 0x94d049bb133111eb;
ret ^= ret >> 31;
}
return ret;
}
namespace sjtu {
template <typename Key, typename T>
class unordered_map {
};
// implementation of unordered_map for Key = std::string
template <typename T>
class unordered_map<std::string, T> {
static const size_t kMaxBucketSize = 1 << 10;
struct Node {
std::string key;
T value;
Node *next;
Node() : next(nullptr) {}
Node(const std::string &key, const T &value, Node *next = nullptr)
: key(key), value(value), next(next) {}
};
Node *buckets[kMaxBucketSize];
size_t bucket_size;
size_t element_size;
public:
unordered_map() : bucket_size(kMaxBucketSize), element_size(0) {
for (size_t i = 0; i < kMaxBucketSize; ++i) {
buckets[i] = nullptr;
}
}
~unordered_map() {
for (size_t i = 0; i < kMaxBucketSize; ++i) {
Node *cur = buckets[i];
while (cur != nullptr) {
Node *temp = cur;
cur = cur->next;
delete temp;
}
}
}
T &operator[](const std::string &key) {
size_t hash = Hash(key) & (kMaxBucketSize - 1);
Node *cur = buckets[hash];
while (cur != nullptr) {
if (cur->key == key) return cur->value;
cur = cur->next;
}
cur = new Node(key, T(), buckets[hash]);
buckets[hash] = cur;
element_size++;
return cur->value;
}
T &at(const std::string &key) {
size_t hash = Hash(key) & (kMaxBucketSize - 1);
Node *cur = buckets[hash];
while (cur != nullptr) {
if (cur->key == key) return cur->value;
cur = cur->next;
}
throw std::out_of_range("Key not found");
}
const T &at(const std::string &key) const {
size_t hash = Hash(key) & (kMaxBucketSize - 1);
Node *cur = buckets[hash];
while (cur != nullptr) {
if (cur->key == key) return cur->value;
cur = cur->next;
}
throw std::out_of_range("Key not found");
}
size_t count(const std::string &key) const {
size_t hash = Hash(key) & (kMaxBucketSize - 1);
Node *cur = buckets[hash];
while (cur != nullptr) {
if (cur->key == key) return 1;
cur = cur->next;
}
return 0;
}
void erase(const std::string &key) {
size_t hash = Hash(key) & (kMaxBucketSize - 1);
Node *cur = buckets[hash];
if (cur == nullptr) return;
if (cur->key == key) {
buckets[hash] = cur->next;
delete cur;
element_size--;
return;
}
while (cur->next != nullptr) {
if (cur->next->key == key) {
Node *temp = cur->next;
cur->next = cur->next->next;
delete temp;
element_size--;
return;
}
cur = cur->next;
}
}
void clear() {
for (size_t i = 0; i < kMaxBucketSize; ++i) {
Node *cur = buckets[i];
while (cur != nullptr) {
Node *temp = cur;
cur = cur->next;
delete temp;
}
buckets[i] = nullptr;
}
element_size = 0;
}
size_t size() const { return element_size; }
bool Have(const std::string &key) const {
size_t hash = Hash(key) & (kMaxBucketSize - 1);
Node *cur = buckets[hash];
while (cur != nullptr) {
if (cur->key == key) return true;
cur = cur->next;
}
return false;
}
};
} // namespace sjtu
class ClassType {
public:
enum ImportType { kPublicImport, kProtectedImport, kPrivateImport };
enum StatusType {
kPublic = 4,
kProtected = 3,
kPrivate = 2,
kUnvisible = 1,
kNone = 0
};
void Import(ClassType &src, ImportType import_type) {
if (import_type == ImportType::kPublicImport) {
pub_anc.push_back(&src);
} else if (import_type == ImportType::kProtectedImport) {
prot_anc.push_back(&src);
} else {
priv_anc.push_back(&src);
}
}
void AddElement(const std::string &name, StatusType status) {
elements[name] = status;
}
StatusType QueryElement(const std::string &name) {
return DFSSearch(this, name);
}
private:
static StatusType DFSSearch(ClassType *rt, const std::string name) {
StatusType res = StatusType::kNone;
if (rt->elements.Have(name)) res = rt->elements[name];
for (int i = 0; i < rt->pub_anc.size(); i++) {
StatusType sub_res = DFSSearch(rt->pub_anc[i], name);
if (sub_res == StatusType::kPrivate) sub_res = StatusType::kUnvisible;
res = (sub_res > res) ? sub_res : res;
}
for (int i = 0; i < rt->prot_anc.size(); i++) {
StatusType sub_res = DFSSearch(rt->prot_anc[i], name);
if (sub_res == StatusType::kPrivate) sub_res = StatusType::kUnvisible;
if ((sub_res == StatusType::kPublic) ||
(sub_res == StatusType::kProtected))
sub_res = StatusType::kProtected;
res = (sub_res > res) ? sub_res : res;
}
for (int i = 0; i < rt->priv_anc.size(); i++) {
StatusType sub_res = DFSSearch(rt->priv_anc[i], name);
if (sub_res == StatusType::kPrivate) sub_res = StatusType::kUnvisible;
if ((sub_res == StatusType::kPublic) ||
(sub_res == StatusType::kProtected))
sub_res = StatusType::kPrivate;
res = (sub_res > res) ? sub_res : res;
}
return res;
}
sjtu::unordered_map<std::string, StatusType> elements;
sjtu::vector<ClassType *> pub_anc, prot_anc, priv_anc;
};
int main() {
#ifdef local
freopen("pro.in", "r", stdin);
#endif // ifdef local
int n;
sjtu::unordered_map<std::string, ClassType> class_registery;
std::cin >> n;
for (int i = 0; i < n; i++) {
std::string name;
std::cin >> name;
class_registery[name];
int k0;
std::cin >> k0;
for (int j = 0; j < k0; j++) {
std::string method, srcname;
std::cin >> method >> srcname;
if (method == "public")
class_registery[name].Import(class_registery[srcname],
ClassType::ImportType::kPublicImport);
else if (method == "private")
class_registery[name].Import(class_registery[srcname],
ClassType::ImportType::kPrivateImport);
else
class_registery[name].Import(class_registery[srcname],
ClassType::ImportType::kProtectedImport);
}
int k1;
std::cin >> k1;
for (int j = 0; j < k1; j++) {
std::string mode, element_name;
std::cin >> mode >> element_name;
if (mode == "public")
class_registery[name].AddElement(element_name,
ClassType::StatusType::kPublic);
else if (mode == "private")
class_registery[name].AddElement(element_name,
ClassType::StatusType::kPrivate);
else
class_registery[name].AddElement(element_name,
ClassType::StatusType::kProtected);
}
}
int m;
std::cin >> m;
for (int i = 0; i < m; i++) {
std::string class_name, element_name;
std::cin >> class_name >> element_name;
ClassType::StatusType stat =
class_registery[class_name].QueryElement(element_name);
switch (stat) {
case ClassType::StatusType::kNone:
std::cout << "None\n";
break;
case ClassType::StatusType::kPrivate:
std::cout << "Private\n";
break;
case ClassType::StatusType::kProtected:
std::cout << "Protected\n";
break;
case ClassType::StatusType::kPublic:
std::cout << "Public\n";
break;
case ClassType::StatusType::kUnvisible:
std::cout << "Can not Fetch\n";
break;
}
}
return 0;
}