write basic structure and insert

This commit is contained in:
2024-03-25 16:02:07 +00:00
parent 543ebb28cb
commit c585b59f7a
2 changed files with 456 additions and 175 deletions

1
.gitignore vendored
View File

@ -4,3 +4,4 @@
/build
/.cache
.clang-format
/map/src/std.hpp

View File

@ -5,186 +5,466 @@
#define SJTU_MAP_HPP
// only for std::less<T>
#include <functional>
#include <cassert>
#include <cstddef>
#include "utility.hpp"
#include <functional>
#include "exceptions.hpp"
#include "utility.hpp"
namespace sjtu {
template<
class Key,
class T,
class Compare = std::less<Key>
> class map {
public:
/**
* the internal type of data.
* it should have a default constructor, a copy constructor.
* You can use sjtu::map as value_type by typedef.
*/
typedef pair<const Key, T> value_type;
/**
* see BidirectionalIterator at CppReference for help.
*
* if there is anything wrong throw invalid_iterator.
* like it = map.begin(); --it;
* or it = map.end(); ++end();
*/
class const_iterator;
class iterator {
private:
/**
* TODO add data members
* just add whatever you want.
*/
public:
iterator() {
// TODO
}
iterator(const iterator &other) {
// TODO
}
/**
* TODO iter++
*/
iterator operator++(int) {}
/**
* TODO ++iter
*/
iterator & operator++() {}
/**
* TODO iter--
*/
iterator operator--(int) {}
/**
* TODO --iter
*/
iterator & operator--() {}
/**
* a operator to check whether two iterators are same (pointing to the same memory).
*/
value_type & operator*() const {}
bool operator==(const iterator &rhs) const {}
bool operator==(const const_iterator &rhs) const {}
/**
* some other operator for iterator.
*/
bool operator!=(const iterator &rhs) const {}
bool operator!=(const const_iterator &rhs) const {}
template <class Key, class T, class Compare = std::less<Key> >
class map {
public:
/**
* the internal type of data.
* it should have a default constructor, a copy constructor.
* You can use sjtu::map as value_type by typedef.
*/
typedef pair<const Key, T> value_type;
/**
* for the support of it->first.
* See <http://kelvinh.github.io/blog/2013/11/20/overloading-of-member-access-operator-dash-greater-than-symbol-in-cpp/> for help.
*/
value_type* operator->() const noexcept {}
};
class const_iterator {
// it should has similar member method as iterator.
// and it should be able to construct from an iterator.
private:
// data members.
public:
const_iterator() {
// TODO
}
const_iterator(const const_iterator &other) {
// TODO
}
const_iterator(const iterator &other) {
// TODO
}
// And other methods in iterator.
// And other methods in iterator.
// And other methods in iterator.
};
/**
* TODO two constructors
*/
map() {}
map(const map &other) {}
/**
* TODO assignment operator
*/
map & operator=(const map &other) {}
/**
* TODO Destructors
*/
~map() {}
/**
* TODO
* access specified element with bounds checking
* Returns a reference to the mapped value of the element with key equivalent to key.
* If no such element exists, an exception of type `index_out_of_bound'
*/
T & at(const Key &key) {}
const T & at(const Key &key) const {}
/**
* TODO
* access specified element
* Returns a reference to the value that is mapped to a key equivalent to key,
* performing an insertion if such key does not already exist.
*/
T & operator[](const Key &key) {}
/**
* behave like at() throw index_out_of_bound if such key does not exist.
*/
const T & operator[](const Key &key) const {}
/**
* return a iterator to the beginning
*/
iterator begin() {}
const_iterator cbegin() const {}
/**
* return a iterator to the end
* in fact, it returns past-the-end.
*/
iterator end() {}
const_iterator cend() const {}
/**
* checks whether the container is empty
* return true if empty, otherwise false.
*/
bool empty() const {}
/**
* returns the number of elements.
*/
size_t size() const {}
/**
* clears the contents
*/
void clear() {}
/**
* insert an element.
* return a pair, the first of the pair is
* the iterator to the new element (or the element that prevented the insertion),
* the second one is true if insert successfully, or false.
*/
pair<iterator, bool> insert(const value_type &value) {}
/**
* erase the element at pos.
*
* throw if pos pointed to a bad element (pos == this->end() || pos points an element out of this)
*/
void erase(iterator pos) {}
/**
* Returns the number of elements with key
* that compares equivalent to the specified argument,
* which is either 1 or 0
* since this container does not allow duplicates.
* The default method of check the equivalence is !(a < b || b > a)
*/
size_t count(const Key &key) const {}
/**
* Finds an element with key equivalent to key.
* key value of the element to search for.
* Iterator to an element with key equivalent to key.
* If no such element is found, past-the-end (see end()) iterator is returned.
*/
iterator find(const Key &key) {}
const_iterator find(const Key &key) const {}
private:
static Compare comparer;
/**
* The NIL Node is recorded as a nullptr pointer.
*/
struct RedBlackTreeNodeType {
value_type val;
RedBlackTreeNodeType *left, *right, *parent;
enum RedBlackTreeColorType { RED, BLACK } color;
RedBlackTreeNodeType() : left(nullptr), right(nullptr), parent(nullptr), color(RED) {}
RedBlackTreeNodeType(const value_type &val, RedBlackTreeNodeType *left, RedBlackTreeNodeType *right,
RedBlackTreeNodeType *parent, RedBlackTreeColorType color)
: val(val), left(left), right(right), parent(parent), color(color) {}
inline RedBlackTreeNodeType *GetGrandParent() const noexcept {
if (parent == nullptr)
#if __cplusplus >= 202002L
[[unlikely]]
#endif
return nullptr;
return parent->parent;
}
inline RedBlackTreeNodeType *GetUncle() const noexcept {
RedBlackTreeNodeType *grand_parent = GetGrandParent();
if (grand_parent == nullptr)
#if __cplusplus >= 202002L
[[unlikely]]
#endif
return nullptr;
if (parent == grand_parent->left)
return grand_parent->right;
else
return grand_parent->left;
}
inline RedBlackTreeNodeType *GetSibling() const noexcept {
if (parent == nullptr)
#if __cplusplus >= 202002L
[[unlikely]]
#endif
return nullptr;
if (this == parent->left)
return parent->right;
else
return parent->left;
}
inline RedBlackTreeNodeType *&GetSelfPath(RedBlackTreeNodeType *&tree_root) noexcept {
if (parent == nullptr) return tree_root;
if (this == parent->left)
return parent->left;
else
return parent->right;
}
inline void SetChildrensParent() noexcept {
if (left != nullptr) left->parent = this;
if (right != nullptr) right->parent = this;
}
inline void RotateLeft(RedBlackTreeNodeType *&tree_root) noexcept {
assert(this->right != nullptr);
RedBlackTreeNodeType *parent_backup = parent;
RedBlackTreeNodeType *&path = this->GetSelfPath(tree_root);
RedBlackTreeNodeType *replacement = this->right;
this->right = replacement->left;
replacement->left = this;
this->SetChildrensParent();
replacement->SetChildrensParent();
path = replacement;
replacement->parent = parent_backup;
}
inline void RotateRight(RedBlackTreeNodeType *&tree_root) noexcept {
assert(this->left != nullptr);
RedBlackTreeNodeType *parent_backup = parent;
RedBlackTreeNodeType *&path = this->GetSelfPath(tree_root);
RedBlackTreeNodeType *replacement = this->left;
this->left = replacement->right;
replacement->right = this;
this->SetChildrensParent();
replacement->SetChildrensParent();
path = replacement;
replacement->parent = parent_backup;
}
void InsertFixUp(RedBlackTreeNodeType *&tree_root) {
if (parent == nullptr) {
// Case 1
color = RedBlackTreeColorType::BLACK;
return;
}
if (parent->color == RedBlackTreeColorType::BLACK) return;
if (parent->parent == nullptr) {
// Case 2 & 3
parent->color = RedBlackTreeColorType::BLACK;
return;
}
RedBlackTreeNodeType *uncle = GetUncle();
RedBlackTreeColorType *grand_parent = GetGrandParent();
if (uncle != nullptr && uncle->color == RedBlackTreeColorType::RED) {
// Case 4
parent->color = RedBlackTreeColorType::BLACK;
uncle->color = RedBlackTreeColorType::BLACK;
grand_parent->color = RedBlackTreeColorType::RED;
grand_parent->InsertFixUp(tree_root);
return;
}
if (grand_parent->left == parent) {
if (parent->right == this) {
parent->RotateLeft(tree_root);
assert(parent->parent == this);
parent->InsertFixUp(tree_root);
return;
}
grand_parent->RotateRight(tree_root);
assert(grand_parent->parent == parent);
parent->color = RedBlackTreeColorType::BLACK;
grand_parent->color = RedBlackTreeColorType::RED;
} else {
if (parent->left == this) {
parent->RotateRight(tree_root);
assert(parent->parent == this);
parent->InsertFixUp(tree_root);
return;
}
grand_parent->RotateLeft(tree_root);
assert(grand_parent->parent == parent);
parent->color = RedBlackTreeColorType::BLACK;
grand_parent->color = RedBlackTreeColorType::RED;
}
}
/**
* @brief Insert a new node into the tree.
*
* @details This function will insert a new node into the tree. If insert successfully, it will return true.
*
* @param tree_root The root of the tree.
* @param val The value to be inserted.
* @param allow_replacement Whether to allow replacement if the key already exists.
*
* @return Whether the insertion is successful.
*
* @note Note that tree_root is a reference to the root of the tree. This function will modify the tree_root if
* necessary.
*/
bool Insert(RedBlackTreeNodeType *&tree_root, const value_type &val, bool allow_replacement) {
if (comparer(val.first, this->val.first)) {
if (left == nullptr) {
left = new RedBlackTreeNodeType(val, nullptr, nullptr, this, RedBlackTreeColorType::RED);
left->parent = this;
left->InsertFixUp(tree_root);
} else {
return left->Insert(tree_root, val, allow_replacement);
}
} else if (comparer(this->val.first, val.first)) {
if (right == nullptr) {
right = new RedBlackTreeNodeType(val, nullptr, nullptr, this, RedBlackTreeColorType::RED);
right->parent = this;
right->InsertFixUp(tree_root);
} else {
return right->Insert(tree_root, val, allow_replacement);
}
} else {
if (allow_replacement) {
this->val = val;
return true;
}
}
return false;
}
/**
* @brief The definition of ReleaseAll.
*
* @details This fuction will be called when the whole map is destructed. It will release all the memory allocated.
*
* @note Note that the node itself must be released outside this function.
*/
void ReleaseAll() {
if (left) left->ReleaseAll();
if (right) right->ReleaseAll();
delete left;
delete right;
}
};
size_t node_count;
RedBlackTreeNodeType *tree_root;
public:
/**
* see BidirectionalIterator at CppReference for help.
*
* if there is anything wrong throw invalid_iterator.
* like it = map.begin(); --it;
* or it = map.end(); ++end();
*/
class const_iterator;
class iterator;
friend iterator;
friend const_iterator;
class iterator {
private:
RedBlackTreeNodeType *raw_pointer; // when iterator points to end(), raw_pointer=nullptr
map *domain;
public:
iterator() : raw_pointer(nullptr), domain(nullptr) {}
iterator(const iterator &other) : raw_pointer(other.raw_pointer), domain(other.domain) {}
iterator(RedBlackTreeNodeType *raw_pointer, map *domain) : raw_pointer(raw_pointer), domain(domain) {}
iterator &operator++() {
if (raw_pointer == nullptr) throw invalid_iterator();
if (raw_pointer->right != nullptr) {
raw_pointer = raw_pointer->right;
while (raw_pointer->left != nullptr) raw_pointer = raw_pointer->left;
} else {
RedBlackTreeNodeType *backup = raw_pointer;
while (raw_pointer->parent != nullptr && raw_pointer->parent->right == raw_pointer)
raw_pointer = raw_pointer->parent;
if (raw_pointer->parent == nullptr) {
raw_pointer = nullptr;
return *this;
}
raw_pointer = raw_pointer->parent;
}
return *this;
}
iterator operator++(int) {
iterator tmp = *this;
++*this;
return tmp;
}
iterator &operator--() {
if (raw_pointer == nullptr) {
if (domain == nullptr) throw invalid_iterator();
raw_pointer = domain->tree_root;
while (raw_pointer->right != nullptr) raw_pointer = raw_pointer->right;
return *this;
}
if (raw_pointer->left != nullptr) {
raw_pointer = raw_pointer->left;
while (raw_pointer->right != nullptr) raw_pointer = raw_pointer->right;
} else {
RedBlackTreeNodeType *backup = raw_pointer;
while (raw_pointer->parent != nullptr && raw_pointer->parent->left == raw_pointer)
raw_pointer = raw_pointer->parent;
if (raw_pointer->parent == nullptr) {
throw invalid_iterator();
raw_pointer = nullptr;
return *this;
}
raw_pointer = raw_pointer->parent;
}
return *this;
}
iterator operator--(int) {
iterator tmp = *this;
--*this;
return tmp;
}
/**
* a operator to check whether two iterators are same (pointing to the same memory).
*/
value_type &operator*() const {
if (raw_pointer == nullptr) throw invalid_iterator();
return raw_pointer->val;
}
bool operator==(const iterator &rhs) const { return raw_pointer == rhs.raw_pointer; }
bool operator==(const const_iterator &rhs) const { return raw_pointer == rhs.raw_pointer; }
/**
* some other operator for iterator.
*/
bool operator!=(const iterator &rhs) const { return raw_pointer != rhs.raw_pointer; }
bool operator!=(const const_iterator &rhs) const { return raw_pointer != rhs.raw_pointer; }
/**
* for the support of it->first.
* See
* <http://kelvinh.github.io/blog/2013/11/20/overloading-of-member-access-operator-dash-greater-than-symbol-in-cpp/>
* for help.
*/
value_type *operator->() const noexcept { return &raw_pointer->val; }
};
class const_iterator {
private:
RedBlackTreeNodeType *raw_pointer; // when iterator points to end(), raw_pointer=nullptr
const map *domain;
public:
const_iterator() : raw_pointer(nullptr), domain(nullptr) {}
const_iterator(const const_iterator &other) : raw_pointer(other.raw_pointer), domain(other.domain) {}
const_iterator(const iterator &other) : raw_pointer(other.raw_pointer), domain(other.domain) {}
const_iterator(RedBlackTreeNodeType *raw_pointer, const map *domain) : raw_pointer(raw_pointer), domain(domain) {}
const_iterator &operator++() {
if (raw_pointer == nullptr) throw invalid_iterator();
if (raw_pointer->right != nullptr) {
raw_pointer = raw_pointer->right;
while (raw_pointer->left != nullptr) raw_pointer = raw_pointer->left;
} else {
RedBlackTreeNodeType *backup = raw_pointer;
while (raw_pointer->parent != nullptr && raw_pointer->parent->right == raw_pointer)
raw_pointer = raw_pointer->parent;
if (raw_pointer->parent == nullptr) {
raw_pointer = nullptr;
return *this;
}
raw_pointer = raw_pointer->parent;
}
return *this;
}
const_iterator operator++(int) {
const_iterator tmp = *this;
++*this;
return tmp;
}
const_iterator &operator--() {
if (raw_pointer == nullptr) {
if (domain == nullptr) throw invalid_iterator();
raw_pointer = domain->tree_root;
while (raw_pointer->right != nullptr) raw_pointer = raw_pointer->right;
return *this;
}
if (raw_pointer->left != nullptr) {
raw_pointer = raw_pointer->left;
while (raw_pointer->right != nullptr) raw_pointer = raw_pointer->right;
} else {
RedBlackTreeNodeType *backup = raw_pointer;
while (raw_pointer->parent != nullptr && raw_pointer->parent->left == raw_pointer)
raw_pointer = raw_pointer->parent;
if (raw_pointer->parent == nullptr) {
throw invalid_iterator();
raw_pointer = nullptr;
return *this;
}
raw_pointer = raw_pointer->parent;
}
return *this;
}
const_iterator operator--(int) {
const_iterator tmp = *this;
--*this;
return tmp;
}
/**
* a operator to check whether two iterators are same (pointing to the same memory).
*/
const value_type &operator*() const {
if (raw_pointer == nullptr) throw invalid_iterator();
return raw_pointer->val;
}
bool operator==(const iterator &rhs) const { return raw_pointer == rhs.raw_pointer; }
bool operator==(const const_iterator &rhs) const { return raw_pointer == rhs.raw_pointer; }
/**
* some other operator for iterator.
*/
bool operator!=(const iterator &rhs) const { return raw_pointer != rhs.raw_pointer; }
bool operator!=(const const_iterator &rhs) const { return raw_pointer != rhs.raw_pointer; }
value_type *operator->() const noexcept { return &raw_pointer->val; }
};
map() : node_count(0), tree_root(nullptr) {}
// TODO copy constructor
map(const map &other) {}
/**
* TODO assignment operator
*/
map &operator=(const map &other) {}
~map() {
if (tree_root) tree_root->ReleaseAll();
delete tree_root;
}
/**
* TODO
* access specified element with bounds checking
* Returns a reference to the mapped value of the element with key equivalent to key.
* If no such element exists, an exception of type `index_out_of_bound'
*/
T &at(const Key &key) {}
const T &at(const Key &key) const {}
/**
* TODO
* access specified element
* Returns a reference to the value that is mapped to a key equivalent to key,
* performing an insertion if such key does not already exist.
*/
T &operator[](const Key &key) {}
/**
* behave like at() throw index_out_of_bound if such key does not exist.
*/
const T &operator[](const Key &key) const {}
/**
* return a iterator to the beginning
*/
iterator begin() {}
const_iterator cbegin() const {}
/**
* return a iterator to the end
* in fact, it returns past-the-end.
*/
iterator end() {}
const_iterator cend() const {}
/**
* checks whether the container is empty
* return true if empty, otherwise false.
*/
bool empty() const { return node_count == 0; }
/**
* returns the number of elements.
*/
size_t size() const { return node_count; }
/**
* clears the contents
*/
void clear() {}
/**
* insert an element.
* return a pair, the first of the pair is
* the iterator to the new element (or the element that prevented the insertion),
* the second one is true if insert successfully, or false.
*/
pair<iterator, bool> insert(const value_type &value) {
if (tree_root == nullptr) {
tree_root = new RedBlackTreeNodeType(value, nullptr, nullptr, nullptr, RedBlackTreeNodeType::BLACK);
node_count = 1;
return pair<iterator, bool>(iterator(tree_root), true);
}
}
/**
* erase the element at pos.
*
* throw if pos pointed to a bad element (pos == this->end() || pos points an element out of this)
*/
void erase(iterator pos) {}
/**
* Returns the number of elements with key
* that compares equivalent to the specified argument,
* which is either 1 or 0
* since this container does not allow duplicates.
* The default method of check the equivalence is !(a < b || b > a)
*/
size_t count(const Key &key) const {}
/**
* Finds an element with key equivalent to key.
* key value of the element to search for.
* Iterator to an element with key equivalent to key.
* If no such element is found, past-the-end (see end()) iterator is returned.
*/
iterator find(const Key &key) {}
const_iterator find(const Key &key) const {}
};
}
} // namespace sjtu
#endif