write low_bount_cal

This commit is contained in:
2024-09-06 15:12:18 +08:00
parent a645929964
commit 03af8507d8
4 changed files with 200 additions and 1 deletions

1
.gitignore vendored
View File

@@ -3,3 +3,4 @@
*.bak
*.dat
*.log
__pycache__/

155
A/3/dragon.py Normal file
View File

@@ -0,0 +1,155 @@
import mpmath as mp
import json
import sys
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
import numpy as np
from typing import *
import threading
import numba
import multiprocessing
mp.dps = 15 # 设置精度为15位小数
kSegLength1 = mp.mpf('2.86')
kSegLength2 = mp.mpf('1.65')
kPointsConsidered=50
kInnerCircleRadius=4.5
class Dragon:
def __init__(self,kAlpha):
self.kAlpha = kAlpha
def Theta2C(self, theta):
tmp = mp.sqrt(1 + theta**2)
return self.kAlpha * 0.5 * (theta * tmp - mp.log(-theta + tmp))
def Theta2Dot(self, theta):
return (self.kAlpha * theta * mp.cos(theta), self.kAlpha * theta * mp.sin(theta))
def GenerateFirstNodeTheta(self, delta_theta):
return kInnerCircleRadius/self.kAlpha
def GenerateFollowNodeTheta(self, cur_node_theta, expected_distance):
cur_node_dot = self.Theta2Dot(cur_node_theta)
def f(theta):
test_node_dot = self.Theta2Dot(theta)
actual_distance = mp.sqrt((cur_node_dot[0]-test_node_dot[0])**2 + (cur_node_dot[1]-test_node_dot[1])**2)
return actual_distance - expected_distance
return mp.findroot(f, cur_node_theta + 0.1, solver='secant',tol=1e-20)
def CalcMoveList(self, delta_theta=0):
first_node_theta = self.GenerateFirstNodeTheta(delta_theta)
first_node_dot = self.Theta2Dot(first_node_theta)
first_node_C = self.Theta2C(first_node_theta)
node_list = [{"theta": first_node_theta, "node": first_node_dot, "C": first_node_C, "v": mp.mpf('1.0')}]
for i in range(1, kPointsConsidered):
expected_distance = kSegLength1 if i == 1 else kSegLength2
cur_node_theta = self.GenerateFollowNodeTheta(node_list[-1]["theta"], expected_distance)
cur_node_dot = self.Theta2Dot(cur_node_theta)
cur_node_C = self.Theta2C(cur_node_theta)
node_list.append({"theta": cur_node_theta, "node": cur_node_dot, "C": cur_node_C})
for i in range(kPointsConsidered-1):
AA = kSegLength1 if i == 0 else kSegLength2
theta_i = node_list[i]["theta"]
theta_ip1 = node_list[i+1]["theta"]
alpha_i = mp.atan(theta_i)
alpha_ip1 = mp.atan(theta_ip1)
beta_i = mp.acos(((self.kAlpha*theta_i)**2 + AA**2 - (self.kAlpha*theta_ip1)**2) / (2*self.kAlpha*theta_i*AA))
gama_i = mp.acos(((self.kAlpha*theta_ip1)**2 + AA**2 - (self.kAlpha*theta_i)**2) / (2*self.kAlpha*theta_ip1*AA))
node_list[i+1]["v"] = node_list[i]["v"] * (-mp.cos(alpha_i + beta_i) / mp.cos(alpha_ip1 - gama_i))
return node_list
# 将结果转换为float并保留6位小数
def mp2float(time_point_list):
float_res_list = [
{k: round(float(v), 6) if isinstance(v, mp.mpf) else
[round(float(x), 6) for x in v] if isinstance(v, tuple) else v
for k, v in node.items()}
for node in time_point_list
]
return float_res_list
def status2blocks(node_list):
res=[]
for i in range(len(node_list) - 1):
x1, y1 = [float(coord) for coord in node_list[i]["node"]]
x2, y2 = [float(coord) for coord in node_list[i+1]["node"]]
# 计算并绘制木板(长方形)
dx = x2 - x1
dy = y2 - y1
length = np.sqrt(dx**2 + dy**2)
angle = np.arctan2(dy, dx)
rect_length = length + 0.55 # 总长度加上两端各延伸的0.275m
rect_width = 0.3
# 计算长方形的中心点
center_x = (x1 + x2) / 2
center_y = (y1 + y2) / 2
# 左下角坐标
rect1_x = center_x - rect_length/2 * np.cos(angle) + rect_width/2 * np.sin(angle)
rect1_y = center_y - rect_length/2 * np.sin(angle) - rect_width/2 * np.cos(angle)
# 右下角坐标
rect2_x = center_x + rect_length/2 * np.cos(angle) + rect_width/2 * np.sin(angle)
rect2_y = center_y + rect_length/2 * np.sin(angle) - rect_width/2 * np.cos(angle)
# 右上角坐标
rect3_x = center_x + rect_length/2 * np.cos(angle) - rect_width/2 * np.sin(angle)
rect3_y = center_y + rect_length/2 * np.sin(angle) + rect_width/2 * np.cos(angle)
# 左上角坐标
rect4_x = center_x - rect_length/2 * np.cos(angle) - rect_width/2 * np.sin(angle)
rect4_y = center_y - rect_length/2 * np.sin(angle) + rect_width/2 * np.cos(angle)
res.append(((rect1_x, rect1_y), (rect2_x, rect2_y), (rect3_x, rect3_y), (rect4_x, rect4_y)))
return res
@numba.njit
def CrossProduct(a,b):
return a[0]*b[1]-a[1]*b[0]
@numba.njit
def PointInBlock(point,block):
vec1_alpha=(block[1][0]-block[0][0],block[1][1]-block[0][1])
vec1_beta=(point[0]-block[0][0],point[1]-block[0][1])
vec2_alpha=(block[2][0]-block[1][0],block[2][1]-block[1][1])
vec2_beta=(point[0]-block[1][0],point[1]-block[1][1])
vec3_alpha=(block[3][0]-block[2][0],block[3][1]-block[2][1])
vec3_beta=(point[0]-block[2][0],point[1]-block[2][1])
vec4_alpha=(block[0][0]-block[3][0],block[0][1]-block[3][1])
vec4_beta=(point[0]-block[3][0],point[1]-block[3][1])
status1=CrossProduct(vec1_alpha,vec1_beta)
status2=CrossProduct(vec2_alpha,vec2_beta)
status3=CrossProduct(vec3_alpha,vec3_beta)
status4=CrossProduct(vec4_alpha,vec4_beta)
if status1<0:
return -1
if status2<0:
return -1
if status3<0:
return -1
if status4<0:
return -1
kEps=1e-10
if status1<kEps or status2<kEps or status3<kEps or status4<kEps:
return 0
return 1
def CheckCollision(block_list):
res = -1
for i in range(len(block_list)-1):
for j in range(2):
point=block_list[i][j]
for k in range(i+1,len(block_list)):
status=PointInBlock(point,block_list[k])
if status>res:
res=status
if res==1:
break
return res

42
A/3/low_bound_cal.py Normal file
View File

@@ -0,0 +1,42 @@
from dragon import *
kBegPitch = 0.3
kEndPitch = 0.55
kTotalSteps = 10000
kStepAlpha = (kEndPitch - kBegPitch) / kTotalSteps
kParallelNum=24
tasks_list = [kBegPitch + kStepAlpha * i for i in range(kTotalSteps)]
task_list_per_process=[tasks_list[i::kParallelNum] for i in range(kParallelNum)]
print(f"len(task_list_per_thread)={len(task_list_per_process)}",file=sys.stderr)
def ProcessEntryPoint(arg):
pitch_list, process_id, shared_dict, lock = arg
logf=open(f"low_bound_cal_{process_id}.log","w")
print(f"calculating pitch_list={pitch_list} with process_id={process_id}",file=logf)
cnt = 0
tmp_res={}
for pitch in pitch_list:
dragen = Dragon(mp.mpf(pitch)/(2*mp.pi))
status = CheckCollision(status2blocks(dragen.CalcMoveList()))
tmp_res[pitch]=status
print(f"res={status}",file=logf)
with lock: # 添加锁保护对共享字典的操作
shared_dict.update(tmp_res)
if __name__ == "__main__":
manager = multiprocessing.Manager()
shared_dict = manager.dict() # 创建一个共享字典
lock = manager.Lock() # 创建一个共享的锁
task_args_list = [(task_list_per_process[i], i, shared_dict, lock) for i in range(kParallelNum)]
with multiprocessing.Pool(processes=kParallelNum) as pool:
pool.map(ProcessEntryPoint, task_args_list)
print(f"\nFinal Results: \n")
res_array=sorted(shared_dict.items())
for item in res_array:
time_point, status = item
print(f"time point={time_point}",end=" ")
if status==-1:
print("NoCollision")
elif status==0:
print("CollisionOnEdge")
else:
print("CollisionInBlock")

1
A/3/sufficiency_test.py Normal file
View File

@@ -0,0 +1 @@
from dragon import *