finish first path
This commit is contained in:
82
A/4/testplot.py
Normal file
82
A/4/testplot.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
kPitch = 1.7
|
||||
kAlpha = kPitch / (2 * np.pi)
|
||||
kCriticalRadius = 4.5
|
||||
|
||||
theta_max = (kCriticalRadius) / kAlpha + 2*2*np.pi
|
||||
kPlotingRadius = theta_max * kAlpha
|
||||
|
||||
kCriticalTheta = 2.86 / ((2/3)*kAlpha)
|
||||
# 生成角度数组
|
||||
theta = np.linspace(kCriticalTheta, theta_max, 1000)
|
||||
|
||||
# 根据等距螺旋方程计算半径
|
||||
r1 = kAlpha * theta
|
||||
r2 = kAlpha * theta # 半径保持正值
|
||||
|
||||
# 为第二只螺旋添加相位偏移
|
||||
theta2 = theta + np.pi # 角度偏移π
|
||||
|
||||
# 创建图形
|
||||
plt.figure()
|
||||
ax = plt.subplot(projection='polar') # 使用极坐标系
|
||||
|
||||
# 绘制第一只螺旋
|
||||
ax.plot(theta, r1)
|
||||
|
||||
# 绘制中心对称的另一只螺旋
|
||||
ax.plot(theta2, r2)
|
||||
|
||||
# 绘制半径为4.5的圆
|
||||
circle_theta = np.linspace(0, 2 * np.pi, 1000)
|
||||
circle_r = np.full_like(circle_theta, kCriticalRadius)
|
||||
ax.plot(circle_theta, circle_r, linestyle='--')
|
||||
|
||||
point_A_cartesian = (kAlpha*kCriticalTheta*np.cos(kCriticalTheta),kAlpha*kCriticalTheta*np.sin(kCriticalTheta))
|
||||
point_B_cartesian = (-kAlpha*kCriticalTheta*np.cos(kCriticalTheta),-kAlpha*kCriticalTheta*np.sin(kCriticalTheta))
|
||||
kPhi = np.arctan(kCriticalTheta)
|
||||
r = (1/3) * kAlpha * np.sqrt(1 + kCriticalTheta**2)
|
||||
dx, dy = point_A_cartesian[0] - point_B_cartesian[0], point_A_cartesian[1] - point_B_cartesian[1]
|
||||
angle = np.arctan2(dy, dx)
|
||||
dx, dy = np.cos(angle - (0.5*np.pi-kPhi)), np.sin(angle - (0.5*np.pi-kPhi))
|
||||
point_C1_cartesian = (point_A_cartesian[0] - 2*r*dx, point_A_cartesian[1] - 2*r*dy)
|
||||
point_C2_cartesian = (point_B_cartesian[0] + 1*r*dx, point_B_cartesian[1] + 1*r*dy)
|
||||
radius_of_C1 = 2*r
|
||||
radius_of_C2 = 1*r
|
||||
|
||||
# 定义用于绘制圆的函数
|
||||
def draw_circle(ax, center, radius, num_points, beg_angle, span_angle):
|
||||
t = np.linspace(beg_angle, beg_angle+span_angle, num_points)
|
||||
x = center[0] + radius * np.cos(t)
|
||||
y = center[1] + radius * np.sin(t)
|
||||
r, theta = np.sqrt(x**2 + y**2), np.arctan2(y, x)
|
||||
ax.plot(theta, r)
|
||||
|
||||
# 绘制圆C1
|
||||
draw_circle(ax, point_C1_cartesian, radius_of_C1, 100, angle+0.5*np.pi-kPhi-np.pi, 2*kPhi)
|
||||
|
||||
# 绘制圆C2
|
||||
draw_circle(ax, point_C2_cartesian, radius_of_C2, 100, angle+0.5*np.pi-kPhi, 2*kPhi)
|
||||
|
||||
print(f"Total length={6*r*kPhi}")
|
||||
|
||||
x_ticks = np.arange(-int(kPlotingRadius)-1, int(kPlotingRadius)+1, 1)
|
||||
y_ticks = np.arange(-int(kPlotingRadius)-1, int(kPlotingRadius)+1, 1)
|
||||
X, Y = np.meshgrid(x_ticks, y_ticks)
|
||||
X = X.flatten()
|
||||
Y = Y.flatten()
|
||||
|
||||
# 将网格点转换为极坐标
|
||||
r_grid = np.sqrt(X**2 + Y**2)
|
||||
theta_grid = np.arctan2(Y, X)
|
||||
|
||||
# 仅绘制半径不超过kPlotingRadius的点
|
||||
valid_points = r_grid <= kPlotingRadius
|
||||
ax.scatter(theta_grid[valid_points], r_grid[valid_points], color='red', s=10) # 红色小点
|
||||
|
||||
plt.title("The Moving Path")
|
||||
|
||||
# 显示图像
|
||||
plt.show()
|
@@ -65,6 +65,8 @@ dependencies:
|
||||
- libedit=3.1.20230828=h5eee18b_0
|
||||
- libffi=3.4.4=h6a678d5_1
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgfortran-ng=11.2.0=h00389a5_1
|
||||
- libgfortran5=11.2.0=h1234567_1
|
||||
- libglib=2.78.4=hdc74915_0
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libiconv=1.16=h5eee18b_3
|
||||
@@ -111,6 +113,7 @@ dependencies:
|
||||
- pillow=10.4.0=py312h5eee18b_0
|
||||
- pip=24.2=py312h06a4308_0
|
||||
- ply=3.11=py312h06a4308_1
|
||||
- pybind11-abi=5=hd3eb1b0_0
|
||||
- pyparsing=3.1.2=py312h06a4308_0
|
||||
- pyqt=5.15.10=py312h6a678d5_0
|
||||
- pyqt5-sip=12.13.0=py312h5eee18b_0
|
||||
@@ -124,6 +127,7 @@ dependencies:
|
||||
- qt-main=5.15.2=h53bd1ea_10
|
||||
- readline=8.2=h5eee18b_0
|
||||
- requests=2.32.3=py312h06a4308_0
|
||||
- scipy=1.13.1=py312hc5e2394_0
|
||||
- setuptools=72.1.0=py312h06a4308_0
|
||||
- sip=6.7.12=py312h6a678d5_0
|
||||
- six=1.16.0=pyhd3eb1b0_1
|
||||
|
Reference in New Issue
Block a user