Files
cumcm2024-code/A/2/position_watcher.py
2024-09-07 16:47:14 +08:00

130 lines
4.4 KiB
Python

import mpmath as mp
import json
import sys
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
import numpy as np
if __name__ != "__main__":
sys.exit()
mp.dps = 50 # 设置精度为15位小数
kSegLength1 = mp.mpf('2.86')
kSegLength2 = mp.mpf('1.65')
kAlpha = mp.mpf('0.55') / (2 * mp.pi)
def Theta2C(theta):
tmp = mp.sqrt(1 + theta**2)
return kAlpha * 0.5 * (theta * tmp - mp.log(-theta + tmp))
def Theta2Dot(theta):
return (kAlpha * theta * mp.cos(theta), kAlpha * theta * mp.sin(theta))
init_C=Theta2C(2*mp.pi*16)
def GenerateFirstNodeTheta(time_point):
cur_C = init_C - time_point
def f(theta):
return Theta2C(theta) - cur_C
return mp.findroot(f, 2*mp.pi*16, solver='secant')
def GenerateFollowNodeTheta(cur_node_theta, expected_distance):
cur_node_dot = Theta2Dot(cur_node_theta)
def f(theta):
test_node_dot = Theta2Dot(theta)
actual_distance = mp.sqrt((cur_node_dot[0]-test_node_dot[0])**2 + (cur_node_dot[1]-test_node_dot[1])**2)
return actual_distance - expected_distance
return mp.findroot(f, cur_node_theta + 0.1, solver='secant')
kPotingPoints=50
def CalcMoveList(time_point):
first_node_theta = GenerateFirstNodeTheta(time_point)
first_node_dot = Theta2Dot(first_node_theta)
first_node_C = Theta2C(first_node_theta)
node_list = [{"theta": first_node_theta, "node": first_node_dot, "C": first_node_C, "v": mp.mpf('1.0')}]
for i in range(1, kPotingPoints):
expected_distance = kSegLength1 if i == 1 else kSegLength2
cur_node_theta = GenerateFollowNodeTheta(node_list[-1]["theta"], expected_distance)
cur_node_dot = Theta2Dot(cur_node_theta)
cur_node_C = Theta2C(cur_node_theta)
node_list.append({"theta": cur_node_theta, "node": cur_node_dot, "C": cur_node_C})
for i in range(kPotingPoints-1):
AA = kSegLength1 if i == 0 else kSegLength2
theta_i = node_list[i]["theta"]
theta_ip1 = node_list[i+1]["theta"]
alpha_i = mp.atan(theta_i)
alpha_ip1 = mp.atan(theta_ip1)
beta_i = mp.acos(((kAlpha*theta_i)**2 + AA**2 - (kAlpha*theta_ip1)**2) / (2*kAlpha*theta_i*AA))
gama_i = mp.acos(((kAlpha*theta_ip1)**2 + AA**2 - (kAlpha*theta_i)**2) / (2*kAlpha*theta_ip1*AA))
node_list[i+1]["v"] = node_list[i]["v"] * (-mp.cos(alpha_i + beta_i) / mp.cos(alpha_ip1 - gama_i))
return node_list
time_point= float(input())
print(f"calculating time_point={time_point}",file=sys.stderr)
time_point_list = CalcMoveList(time_point)
# 将结果转换为float并保留6位小数
float_res_list = [
{k: round(float(v), 6) if isinstance(v, mp.mpf) else
[round(float(x), 6) for x in v] if isinstance(v, tuple) else v
for k, v in node.items()}
for node in time_point_list
]
# print(float_res_list)
json.dump(float_res_list, sys.stdout, indent=4)
def visualize_spiral(node_list):
plt.figure(figsize=(12, 12))
# 绘制灰色螺旋线
theta = np.linspace(0, float(node_list[-1]["theta"]), 1000)
x = [float(Theta2Dot(t)[0]) for t in theta]
y = [float(Theta2Dot(t)[1]) for t in theta]
plt.plot(x, y, color='gray', linewidth=0.5)
# 绘制节点、连接线和木板
for i in range(len(node_list) - 1):
x1, y1 = [float(coord) for coord in node_list[i]["node"]]
x2, y2 = [float(coord) for coord in node_list[i+1]["node"]]
# 绘制红色节点
plt.plot(x1, y1, 'ro', markersize=3)
# 绘制蓝色连接线
plt.plot([x1, x2], [y1, y2], 'b-', linewidth=0.5)
# 计算并绘制木板(长方形)
dx = x2 - x1
dy = y2 - y1
length = np.sqrt(dx**2 + dy**2)
angle = np.arctan2(dy, dx)
rect_length = length + 0.55 # 总长度加上两端各延伸的0.275m
rect_width = 0.3
# 计算长方形的中心点
center_x = (x1 + x2) / 2
center_y = (y1 + y2) / 2
# 计算长方形的左下角坐标
rect_x = center_x - rect_length/2 * np.cos(angle) + rect_width/2 * np.sin(angle)
rect_y = center_y - rect_length/2 * np.sin(angle) - rect_width/2 * np.cos(angle)
rect = Rectangle((rect_x, rect_y), rect_length, rect_width,
angle=angle*180/np.pi, fill=False, edgecolor='g')
plt.gca().add_patch(rect)
# 绘制最后一个节点
x, y = [float(coord) for coord in node_list[-1]["node"]]
plt.plot(x, y, 'ro', markersize=3)
plt.axis('equal')
plt.title(f"Spiral visualization at time={time_point}")
plt.show()
# 在计算完节点列表后调用可视化函数
visualize_spiral(float_res_list)