215 lines
7.3 KiB
Python
215 lines
7.3 KiB
Python
import mpmath as mp
|
|
import json
|
|
import sys
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib.patches import Rectangle
|
|
import numpy as np
|
|
from typing import *
|
|
import threading
|
|
import numba
|
|
import multiprocessing
|
|
import io
|
|
from PIL import Image
|
|
|
|
mp.dps = 50 # 设置精度为50位小数
|
|
|
|
kSegLength1 = mp.mpf('2.86')
|
|
kSegLength2 = mp.mpf('1.65')
|
|
kPointsConsidered=50
|
|
kInnerCircleRadius=4.5
|
|
|
|
class Dragon:
|
|
def __init__(self,kAlpha):
|
|
self.kAlpha = kAlpha
|
|
def Theta2C(self, theta):
|
|
tmp = mp.sqrt(1 + theta**2)
|
|
return self.kAlpha * 0.5 * (theta * tmp - mp.log(-theta + tmp))
|
|
|
|
def Theta2Dot(self, theta):
|
|
return (self.kAlpha * theta * mp.cos(theta), self.kAlpha * theta * mp.sin(theta))
|
|
|
|
def GenerateFirstNodeTheta(self, delta_theta):
|
|
return kInnerCircleRadius/self.kAlpha + delta_theta
|
|
|
|
def GenerateFollowNodeTheta(self, cur_node_theta, expected_distance):
|
|
cur_node_dot = self.Theta2Dot(cur_node_theta)
|
|
def f(theta):
|
|
test_node_dot = self.Theta2Dot(theta)
|
|
actual_distance = mp.sqrt((cur_node_dot[0]-test_node_dot[0])**2 + (cur_node_dot[1]-test_node_dot[1])**2)
|
|
return actual_distance - expected_distance
|
|
return mp.findroot(f, cur_node_theta + 0.1, solver='secant')
|
|
|
|
|
|
def CalcMoveList(self, delta_theta=0):
|
|
first_node_theta = self.GenerateFirstNodeTheta(delta_theta)
|
|
first_node_dot = self.Theta2Dot(first_node_theta)
|
|
first_node_C = self.Theta2C(first_node_theta)
|
|
|
|
node_list = [{"theta": first_node_theta, "node": first_node_dot, "C": first_node_C, "v": mp.mpf('1.0')}]
|
|
|
|
for i in range(1, kPointsConsidered):
|
|
expected_distance = kSegLength1 if i == 1 else kSegLength2
|
|
cur_node_theta = self.GenerateFollowNodeTheta(node_list[-1]["theta"], expected_distance)
|
|
cur_node_dot = self.Theta2Dot(cur_node_theta)
|
|
cur_node_C = self.Theta2C(cur_node_theta)
|
|
node_list.append({"theta": cur_node_theta, "node": cur_node_dot, "C": cur_node_C})
|
|
for i in range(kPointsConsidered-1):
|
|
AA = kSegLength1 if i == 0 else kSegLength2
|
|
theta_i = node_list[i]["theta"]
|
|
theta_ip1 = node_list[i+1]["theta"]
|
|
alpha_i = mp.atan(theta_i)
|
|
alpha_ip1 = mp.atan(theta_ip1)
|
|
beta_i = mp.acos(((self.kAlpha*theta_i)**2 + AA**2 - (self.kAlpha*theta_ip1)**2) / (2*self.kAlpha*theta_i*AA))
|
|
gama_i = mp.acos(((self.kAlpha*theta_ip1)**2 + AA**2 - (self.kAlpha*theta_i)**2) / (2*self.kAlpha*theta_ip1*AA))
|
|
node_list[i+1]["v"] = node_list[i]["v"] * (-mp.cos(alpha_i + beta_i) / mp.cos(alpha_ip1 - gama_i))
|
|
|
|
return node_list
|
|
def GenerateImg(self, node_list):
|
|
fig = plt.figure(figsize=(12, 12))
|
|
|
|
# 绘制灰色螺旋线
|
|
theta = np.linspace(0, float(node_list[-1]["theta"]), 1000)
|
|
x = [float(self.Theta2Dot(t)[0]) for t in theta]
|
|
y = [float(self.Theta2Dot(t)[1]) for t in theta]
|
|
plt.plot(x, y, color='gray', linewidth=0.5)
|
|
|
|
# 绘制节点、连接线和木板
|
|
for i in range(len(node_list) - 1):
|
|
x1, y1 = [float(coord) for coord in node_list[i]["node"]]
|
|
x2, y2 = [float(coord) for coord in node_list[i+1]["node"]]
|
|
|
|
# 绘制红色节点
|
|
plt.plot(x1, y1, 'ro', markersize=3)
|
|
|
|
# 绘制蓝色连接线
|
|
plt.plot([x1, x2], [y1, y2], 'b-', linewidth=0.5)
|
|
|
|
# 计算并绘制木板(长方形)
|
|
dx = x2 - x1
|
|
dy = y2 - y1
|
|
length = np.sqrt(dx**2 + dy**2)
|
|
angle = np.arctan2(dy, dx)
|
|
|
|
rect_length = length + 0.55 # 总长度加上两端各延伸的0.275m
|
|
rect_width = 0.3
|
|
|
|
# 计算长方形的中心点
|
|
center_x = (x1 + x2) / 2
|
|
center_y = (y1 + y2) / 2
|
|
|
|
# 计算长方形的左下角坐标
|
|
rect_x = center_x - rect_length/2 * np.cos(angle) + rect_width/2 * np.sin(angle)
|
|
rect_y = center_y - rect_length/2 * np.sin(angle) - rect_width/2 * np.cos(angle)
|
|
|
|
rect = Rectangle((rect_x, rect_y), rect_length, rect_width,
|
|
angle=angle*180/np.pi, fill=False, edgecolor='g')
|
|
plt.gca().add_patch(rect)
|
|
|
|
# 绘制最后一个节点
|
|
x, y = [float(coord) for coord in node_list[-1]["node"]]
|
|
plt.plot(x, y, 'ro', markersize=3)
|
|
|
|
plt.axis('equal')
|
|
|
|
# 创建一个 BytesIO 对象来存储图像
|
|
buf = io.BytesIO()
|
|
plt.savefig(buf, format='png')
|
|
buf.seek(0)
|
|
|
|
# 清除当前图形,释放内存
|
|
plt.close(fig)
|
|
|
|
# 返回图像对象
|
|
return Image.open(buf)
|
|
|
|
|
|
# 将结果转换为float并保留6位小数
|
|
def mp2float(time_point_list):
|
|
float_res_list = [
|
|
{k: round(float(v), 6) if isinstance(v, mp.mpf) else
|
|
[round(float(x), 6) for x in v] if isinstance(v, tuple) else v
|
|
for k, v in node.items()}
|
|
for node in time_point_list
|
|
]
|
|
return float_res_list
|
|
|
|
def status2blocks(node_list):
|
|
res=[]
|
|
for i in range(len(node_list) - 1):
|
|
x1, y1 = [float(coord) for coord in node_list[i]["node"]]
|
|
x2, y2 = [float(coord) for coord in node_list[i+1]["node"]]
|
|
# 计算并绘制木板(长方形)
|
|
dx = x2 - x1
|
|
dy = y2 - y1
|
|
length = np.sqrt(dx**2 + dy**2)
|
|
angle = np.arctan2(dy, dx)
|
|
|
|
rect_length = length + 0.55 # 总长度加上两端各延伸的0.275m
|
|
rect_width = 0.3
|
|
|
|
# 计算长方形的中心点
|
|
center_x = (x1 + x2) / 2
|
|
center_y = (y1 + y2) / 2
|
|
|
|
# 左下角坐标
|
|
rect1_x = center_x - rect_length/2 * np.cos(angle) + rect_width/2 * np.sin(angle)
|
|
rect1_y = center_y - rect_length/2 * np.sin(angle) - rect_width/2 * np.cos(angle)
|
|
|
|
# 右下角坐标
|
|
rect2_x = center_x + rect_length/2 * np.cos(angle) + rect_width/2 * np.sin(angle)
|
|
rect2_y = center_y + rect_length/2 * np.sin(angle) - rect_width/2 * np.cos(angle)
|
|
|
|
# 右上角坐标
|
|
rect3_x = center_x + rect_length/2 * np.cos(angle) - rect_width/2 * np.sin(angle)
|
|
rect3_y = center_y + rect_length/2 * np.sin(angle) + rect_width/2 * np.cos(angle)
|
|
|
|
# 左上角坐标
|
|
rect4_x = center_x - rect_length/2 * np.cos(angle) - rect_width/2 * np.sin(angle)
|
|
rect4_y = center_y - rect_length/2 * np.sin(angle) + rect_width/2 * np.cos(angle)
|
|
|
|
res.append(((rect1_x, rect1_y), (rect2_x, rect2_y), (rect3_x, rect3_y), (rect4_x, rect4_y)))
|
|
|
|
return res
|
|
|
|
@numba.njit
|
|
def CrossProduct(a,b):
|
|
return a[0]*b[1]-a[1]*b[0]
|
|
@numba.njit
|
|
def PointInBlock(point,block):
|
|
vec1_alpha=(block[1][0]-block[0][0],block[1][1]-block[0][1])
|
|
vec1_beta=(point[0]-block[0][0],point[1]-block[0][1])
|
|
vec2_alpha=(block[2][0]-block[1][0],block[2][1]-block[1][1])
|
|
vec2_beta=(point[0]-block[1][0],point[1]-block[1][1])
|
|
vec3_alpha=(block[3][0]-block[2][0],block[3][1]-block[2][1])
|
|
vec3_beta=(point[0]-block[2][0],point[1]-block[2][1])
|
|
vec4_alpha=(block[0][0]-block[3][0],block[0][1]-block[3][1])
|
|
vec4_beta=(point[0]-block[3][0],point[1]-block[3][1])
|
|
status1=CrossProduct(vec1_alpha,vec1_beta)
|
|
status2=CrossProduct(vec2_alpha,vec2_beta)
|
|
status3=CrossProduct(vec3_alpha,vec3_beta)
|
|
status4=CrossProduct(vec4_alpha,vec4_beta)
|
|
if status1<0:
|
|
return -1
|
|
if status2<0:
|
|
return -1
|
|
if status3<0:
|
|
return -1
|
|
if status4<0:
|
|
return -1
|
|
kEps=1e-10
|
|
if status1<kEps or status2<kEps or status3<kEps or status4<kEps:
|
|
return 0
|
|
return 1
|
|
def CheckCollision(block_list):
|
|
res = -1
|
|
for i in range(len(block_list)-1):
|
|
for j in range(2):
|
|
point=block_list[i][j]
|
|
for k in range(i+1,len(block_list)):
|
|
status=PointInBlock(point,block_list[k])
|
|
if status>res:
|
|
res=status
|
|
if res==1:
|
|
break
|
|
return res
|