928 lines
29 KiB
C++
928 lines
29 KiB
C++
/**
|
|
* @file int2048.cpp --- 2048-bit integer class implementation
|
|
*
|
|
* @details This file contains the implementation of the 2048-bit integer class.
|
|
*
|
|
* Codesytle: This file is written in a sytle mainly based on Google C++ Style
|
|
* Guide. As I use Clang-format to format my code, so the code style may be a
|
|
* little bit strange sometimes, in that case I'll manually format the
|
|
* code.What's sepecial is the comment:
|
|
* 1. Multi-line comments are always before the code they comment on.
|
|
* Usually the code they comment on is a complex procedure,like the definition
|
|
* of a function,a class or a variable with complex operation. If a multi-line
|
|
* comment is in one line, it will start with "/*" instead of "/**",otherwise it
|
|
* will start with "/**" and in the format of Doxygen.
|
|
* 2. Single-line comments are always after the code they comment on.
|
|
* Usually they are in the same line with the code they comment on,but sometimes
|
|
* they may come in the next lines. single-line comments shouldn't exceed 3
|
|
* lines as they are intended to be short and easy to understand.
|
|
* 3. Temporary disabled code will be marked with "//" in the front of each
|
|
* 4. Some comments have special meanings,like "//TODO", "//FIXME", "//XXX","//
|
|
* clang-format off" and "// clang-format on". They are not controlled by the
|
|
* previous rules.
|
|
*/
|
|
#include "int2048.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <utility>
|
|
|
|
static_assert(sizeof(int) == 4, "sizeof(int) != 4");
|
|
static_assert(sizeof(long long) == 8, "sizeof(long long)!=8");
|
|
namespace sjtu {
|
|
// 构造函数
|
|
int2048::int2048() {
|
|
// 实现构造函数逻辑
|
|
buf_length = kDefaultLength;
|
|
val = new int[buf_length]();
|
|
flag = 1;
|
|
num_length = 1;
|
|
}
|
|
int2048::~int2048() {
|
|
// 实现析构函数逻辑
|
|
if (val != nullptr) delete[] val;
|
|
}
|
|
|
|
int2048::int2048(long long input_value) {
|
|
// 实现构造函数逻辑
|
|
buf_length = kDefaultLength;
|
|
val = new int[buf_length]();
|
|
if (input_value < 0) {
|
|
flag = -1;
|
|
input_value = -input_value;
|
|
} else
|
|
flag = 1;
|
|
if (input_value == 0) {
|
|
num_length = 1;
|
|
return;
|
|
}
|
|
num_length = 0;
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
while (input_value > 0) {
|
|
val[num_length / kNum] += (input_value % 10) * kPow10[num_length % kNum];
|
|
input_value /= 10;
|
|
num_length++;
|
|
}
|
|
}
|
|
|
|
int2048::int2048(const std::string &input_value) {
|
|
// 实现构造函数逻辑
|
|
buf_length = (input_value.length() + kNum - 1) / kNum * kMemAdditionScalar;
|
|
val = new int[buf_length]();
|
|
flag = 1;
|
|
num_length = 0;
|
|
if (input_value[0] == '-') {
|
|
flag = -1;
|
|
}
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
int read_highest_pos = (flag > 0 ? 0 : 1);
|
|
while (input_value[read_highest_pos] == '0' &&
|
|
read_highest_pos + 1 < input_value.length())
|
|
read_highest_pos++;
|
|
for (int i = input_value.length() - 1; i >= read_highest_pos; i--) {
|
|
val[num_length / kNum] +=
|
|
(input_value[i] - '0') * kPow10[num_length % kNum];
|
|
num_length++;
|
|
}
|
|
if (num_length == 1 && val[0] == 0) flag = 1;
|
|
}
|
|
|
|
int2048::int2048(const int2048 &input_value) {
|
|
buf_length = input_value.buf_length;
|
|
val = new int[buf_length]();
|
|
memcpy(val, input_value.val, buf_length * sizeof(int));
|
|
flag = input_value.flag;
|
|
num_length = input_value.num_length;
|
|
}
|
|
|
|
int2048::int2048(int2048 &&input_value) noexcept {
|
|
buf_length = input_value.buf_length;
|
|
val = input_value.val;
|
|
flag = input_value.flag;
|
|
num_length = input_value.num_length;
|
|
input_value.buf_length = kDefaultLength;
|
|
input_value.flag = 1;
|
|
input_value.num_length = 1;
|
|
input_value.val = new int[input_value.buf_length]();
|
|
}
|
|
|
|
// 读入一个大整数
|
|
void int2048::read(const std::string &input_value) {
|
|
delete[] val;
|
|
buf_length = (input_value.length() + kNum - 1) / kNum * kMemAdditionScalar;
|
|
val = new int[buf_length]();
|
|
flag = 1;
|
|
num_length = 0;
|
|
if (input_value[0] == '-') {
|
|
flag = -1;
|
|
}
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
int read_highest_pos = (flag > 0 ? 0 : 1);
|
|
while (input_value[read_highest_pos] == '0' &&
|
|
read_highest_pos + 1 < input_value.length())
|
|
read_highest_pos++;
|
|
for (int i = input_value.length() - 1; i >= read_highest_pos; i--) {
|
|
val[num_length / kNum] +=
|
|
(input_value[i] - '0') * kPow10[num_length % kNum];
|
|
num_length++;
|
|
}
|
|
if (num_length == 1 && val[0] == 0) flag = 1;
|
|
}
|
|
|
|
// 输出储存的大整数,无需换行
|
|
void int2048::print() {
|
|
// 实现输出逻辑
|
|
char *buf = new char[num_length + 5];
|
|
char *p = buf;
|
|
if (flag == -1) *p++ = '-';
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
for (int i = num_length - 1; i >= 0; i--)
|
|
*p++ = char('0' + val[i / int2048::kNum] / kPow10[i % int2048::kNum] % 10);
|
|
*p++ = 0;
|
|
std::cout << buf;
|
|
delete[] buf;
|
|
}
|
|
|
|
/**
|
|
* @brief Claim memory for the number.
|
|
*
|
|
* @details warning: ClaimMem doesn't change num_length, so you should change it
|
|
* manually.
|
|
*/
|
|
void int2048::ClaimMem(size_t number_length) {
|
|
size_t new_number_blocks = (number_length + kNum - 1) / kNum;
|
|
if (new_number_blocks > buf_length) {
|
|
int *new_val = new int[new_number_blocks * kMemAdditionScalar]();
|
|
memcpy(new_val, val, buf_length * sizeof(int));
|
|
delete[] val;
|
|
val = new_val;
|
|
buf_length = new_number_blocks * kMemAdditionScalar;
|
|
} else if (new_number_blocks * kMemDeleteScalar < buf_length) {
|
|
int *new_val = new int[new_number_blocks * kMemAdditionScalar]();
|
|
memcpy(new_val, val, new_number_blocks * sizeof(int));
|
|
delete[] val;
|
|
val = new_val;
|
|
buf_length = new_number_blocks * kMemAdditionScalar;
|
|
}
|
|
}
|
|
|
|
inline int UnsignedCmp(const int2048 &A, const int2048 &B) {
|
|
if (A.num_length != B.num_length) return A.num_length < B.num_length ? -1 : 1;
|
|
int number_of_blocks = (A.num_length + int2048::kNum - 1) / int2048::kNum;
|
|
for (int i = number_of_blocks - 1; i >= 0; i--)
|
|
if (A.val[i] != B.val[i]) return A.val[i] < B.val[i] ? -1 : 1;
|
|
return 0;
|
|
}
|
|
inline void UnsignedMinus(int2048 &, const int2048 *, bool inverse = false);
|
|
|
|
inline void UnsignedAdd(int2048 &A, const int2048 *const pB,
|
|
bool inverse = false) {
|
|
if (&A == pB) throw "UnsignedAdd: A and B are the same object";
|
|
if (!inverse) {
|
|
A.ClaimMem(std::max(A.num_length, pB->num_length) + 2);
|
|
for (int i = 0;
|
|
i < (std::max(A.num_length, pB->num_length) + int2048::kNum - 1) /
|
|
int2048::kNum;
|
|
i++) {
|
|
if (i < (pB->num_length + int2048::kNum - 1) / int2048::kNum)
|
|
A.val[i] += pB->val[i];
|
|
if (i + 1 < A.buf_length) A.val[i + 1] += A.val[i] / int2048::kStoreBase;
|
|
A.val[i] %= int2048::kStoreBase;
|
|
}
|
|
A.num_length = std::max(A.num_length, pB->num_length);
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
if (A.val[A.num_length / int2048::kNum] /
|
|
kPow10[A.num_length % int2048::kNum] >
|
|
0)
|
|
A.num_length++;
|
|
} else {
|
|
assert(("this code shouldn't be executed", 0));
|
|
assert(A.num_length % int2048::kNum == 0);
|
|
assert(pB->num_length % int2048::kNum == 0);
|
|
A.ClaimMem(std::max(A.num_length, pB->num_length));
|
|
A.num_length = std::max(A.num_length, pB->num_length);
|
|
for (int i = std::max(A.num_length, pB->num_length) / int2048::kNum - 1;
|
|
i >= 0; i--) {
|
|
if (i < pB->num_length / int2048::kNum) A.val[i] += pB->val[i];
|
|
if (A.val[i] >= int2048::kStoreBase && i - 1 >= 0) {
|
|
A.val[i - 1] += A.val[i] / int2048::kStoreBase;
|
|
A.val[i] %= int2048::kStoreBase;
|
|
}
|
|
}
|
|
while (A.num_length > int2048::kNum &&
|
|
A.val[A.num_length / int2048::kNum - 1] == 0)
|
|
A.num_length -= int2048::kNum;
|
|
}
|
|
}
|
|
|
|
// 加上一个大整数
|
|
int2048 &int2048::add(const int2048 &B) {
|
|
// 实现加法逻辑
|
|
const int2048 *pB = &B;
|
|
if (this->flag == pB->flag) {
|
|
if (this == &B) pB = new int2048(B);
|
|
UnsignedAdd(*this, pB);
|
|
} else if (this->flag == 1 && pB->flag == -1) {
|
|
int cmp = UnsignedCmp(*this, *pB);
|
|
if (cmp >= 0) {
|
|
if (this == &B) pB = new int2048(B);
|
|
UnsignedMinus(*this, pB);
|
|
this->flag = 1;
|
|
} else {
|
|
int2048 new_B = std::move(*this);
|
|
*this = B;
|
|
UnsignedMinus(*this, &new_B);
|
|
this->flag = -1;
|
|
}
|
|
} else if (this->flag == -1 && pB->flag == 1) {
|
|
int cmp = UnsignedCmp(*this, *pB);
|
|
if (cmp >= 0) {
|
|
if (this == &B) pB = new int2048(B);
|
|
UnsignedMinus(*this, pB);
|
|
this->flag = -1;
|
|
if (this->num_length == 1 && this->val[0] == 0) this->flag = 1;
|
|
} else {
|
|
int2048 new_B = std::move(*this);
|
|
*this = B;
|
|
UnsignedMinus(*this, &new_B);
|
|
this->flag = 1;
|
|
}
|
|
}
|
|
if (pB != &B) delete pB;
|
|
return *this;
|
|
}
|
|
|
|
// 返回两个大整数之和
|
|
int2048 add(int2048 A, const int2048 &B) {
|
|
// 实现加法逻辑
|
|
return std::move(A.add(B));
|
|
}
|
|
|
|
inline void UnsignedMinus(int2048 &A, const int2048 *const pB, bool inverse) {
|
|
if (&A == pB) throw "UnsignedMinus: A and B are the same object";
|
|
if (!inverse) {
|
|
for (int i = 0; i < (pB->num_length + int2048::kNum - 1) / int2048::kNum;
|
|
i++) {
|
|
A.val[i] -= pB->val[i];
|
|
if (A.val[i] < 0 && i + 1 < A.buf_length) {
|
|
A.val[i] += int2048::kStoreBase;
|
|
A.val[i + 1]--;
|
|
}
|
|
}
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
int new_length = 0;
|
|
for (int i = 0; i < A.num_length; i++)
|
|
if (A.val[i / int2048::kNum] / kPow10[i % int2048::kNum] > 0)
|
|
new_length = i + 1;
|
|
A.num_length = new_length;
|
|
if (A.num_length == 0) A.num_length = 1;
|
|
A.ClaimMem(A.num_length);
|
|
} else {
|
|
assert(A.num_length % int2048::kNum == 0);
|
|
assert(pB->num_length % int2048::kNum == 0);
|
|
int blocks_A = A.num_length / int2048::kNum;
|
|
int blocks_B = pB->num_length / int2048::kNum;
|
|
if (blocks_A < blocks_B) {
|
|
A.ClaimMem(blocks_B * int2048::kNum);
|
|
A.num_length = blocks_B * int2048::kNum;
|
|
blocks_A = blocks_B;
|
|
}
|
|
for (int i = (pB->num_length + int2048::kNum - 1) / int2048::kNum - 1;
|
|
i >= 0; i--) {
|
|
if (i < blocks_B && i < blocks_A) A.val[i] -= pB->val[i];
|
|
if (i < blocks_A && A.val[i] < 0 && i - 1 >= 0) {
|
|
A.val[i] += int2048::kStoreBase;
|
|
A.val[i - 1]--;
|
|
}
|
|
}
|
|
while (A.num_length > int2048::kNum &&
|
|
A.val[A.num_length / int2048::kNum - 1] == 0)
|
|
A.num_length -= int2048::kNum;
|
|
A.ClaimMem(A.num_length);
|
|
}
|
|
}
|
|
|
|
// 减去一个大整数
|
|
int2048 &int2048::minus(const int2048 &B) {
|
|
// 实现减法逻辑
|
|
const int2048 *pB = &B;
|
|
if (this->flag == B.flag) {
|
|
int cmp = UnsignedCmp(*this, *pB);
|
|
if (cmp >= 0) {
|
|
if (this == &B) pB = new int2048(B);
|
|
UnsignedMinus(*this, pB);
|
|
if (this->num_length == 1 && this->val[0] == 0) this->flag = 1;
|
|
} else {
|
|
int2048 new_B = std::move(*this);
|
|
*this = B;
|
|
UnsignedMinus(*this, &new_B);
|
|
this->flag = -this->flag;
|
|
if (this->num_length == 1 && this->val[0] == 0) this->flag = 1;
|
|
}
|
|
} else {
|
|
if (this == &B) pB = new int2048(B);
|
|
UnsignedAdd(*this, pB);
|
|
}
|
|
if (pB != &B) delete pB;
|
|
return *this;
|
|
}
|
|
|
|
// 返回两个大整数之差
|
|
int2048 minus(int2048 A, const int2048 &B) {
|
|
// 实现减法逻辑
|
|
return std::move(A.minus(B));
|
|
}
|
|
|
|
// 运算符重载
|
|
|
|
int2048 int2048::operator+() const {
|
|
// 实现一元加法逻辑
|
|
return std::move(int2048(*this));
|
|
}
|
|
|
|
int2048 int2048::operator-() const {
|
|
// 实现一元减法逻辑
|
|
int2048 ret(*this);
|
|
if (!(ret.num_length == 1 && ret.val[0] == 0)) ret.flag = -ret.flag;
|
|
return std::move(ret);
|
|
}
|
|
|
|
int2048 &int2048::operator=(const int2048 &B) {
|
|
// 实现赋值运算符逻辑
|
|
// similar to int2048::int2048(const int2048 &input_value)
|
|
if (this == &B) return *this;
|
|
delete[] val;
|
|
buf_length = B.buf_length;
|
|
val = new int[buf_length]();
|
|
memcpy(val, B.val, buf_length * sizeof(int));
|
|
flag = B.flag;
|
|
num_length = B.num_length;
|
|
return *this;
|
|
}
|
|
|
|
int2048 &int2048::operator=(int2048 &&B) noexcept {
|
|
// 实现移动赋值运算符逻辑
|
|
if (this == &B) return *this;
|
|
delete[] val;
|
|
buf_length = B.buf_length;
|
|
val = B.val;
|
|
flag = B.flag;
|
|
num_length = B.num_length;
|
|
B.buf_length = kDefaultLength;
|
|
B.flag = 1;
|
|
B.num_length = 1;
|
|
B.val = new int[B.buf_length]();
|
|
return *this;
|
|
}
|
|
|
|
int2048 &int2048::operator+=(const int2048 &B) {
|
|
// 实现复合加法逻辑
|
|
return this->add(B);
|
|
}
|
|
|
|
int2048 operator+(int2048 A, const int2048 &B) {
|
|
// 实现加法逻辑
|
|
A.add(B);
|
|
return std::move(A);
|
|
}
|
|
|
|
int2048 &int2048::operator-=(const int2048 &B) {
|
|
// 实现复合减法逻辑
|
|
return this->minus(B);
|
|
}
|
|
|
|
int2048 operator-(int2048 A, const int2048 &B) {
|
|
// 实现减法逻辑
|
|
A.minus(B);
|
|
return std::move(A);
|
|
}
|
|
__int128_t int2048::QuickPow(__int128_t v, long long q) {
|
|
__int128_t ret = 1;
|
|
v %= int2048::kNTTMod;
|
|
while (q > 0) {
|
|
if (q & 1) (ret *= v) %= int2048::kNTTMod;
|
|
(v *= v) %= int2048::kNTTMod;
|
|
q >>= 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// /**
|
|
// * @brief Move the number to the left by L digits. That is, v'=v*(10^L)
|
|
// */
|
|
// void int2048::LeftMoveBy(int L) {
|
|
// const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
// 100000, 1000000, 10000000, 100000000};
|
|
// int big_move = L / int2048::kNum;
|
|
// int small_move = L % int2048::kNum;
|
|
// this->ClaimMem(this->num_length + L);
|
|
// for (int i = this->buf_length - 1; i >= big_move; i--) {
|
|
// this->val[i] = this->val[i - big_move];
|
|
// }
|
|
// for (int i = 0; i < big_move; i++) {
|
|
// this->val[i] = 0;
|
|
// }
|
|
// this->num_length += big_move * int2048::kNum;
|
|
// if (small_move == 0) return;
|
|
// for (int i = this->buf_length - 1; i >= 0; i--) {
|
|
// (this->val[i] *= kPow10[small_move]) %= int2048::kStoreBase;
|
|
// if (i - 1 >= 0) {
|
|
// this->val[i] += this->val[i - 1] / kPow10[int2048::kNum - small_move];
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
/**
|
|
* @brief Move the number to the right by L digits. That is, v'=v//(10^L)
|
|
*/
|
|
void int2048::RightMoveBy(int L) {
|
|
if (L >= this->num_length) {
|
|
this->num_length = 1;
|
|
this->val[0] = 0;
|
|
return;
|
|
}
|
|
int big_move = L / int2048::kNum;
|
|
int small_move = L % int2048::kNum;
|
|
for (int i = 0; i < this->buf_length - big_move; i++) {
|
|
this->val[i] = this->val[i + big_move];
|
|
}
|
|
for (int i = this->buf_length - big_move; i < this->buf_length; i++) {
|
|
this->val[i] = 0;
|
|
}
|
|
this->num_length -= big_move * int2048::kNum;
|
|
if (small_move == 0) return;
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
for (int i = 0; i < this->buf_length; i++) {
|
|
this->val[i] /= kPow10[small_move];
|
|
if (i + 1 < this->buf_length) {
|
|
this->val[i] += this->val[i + 1] % kPow10[small_move] *
|
|
kPow10[int2048::kNum - small_move];
|
|
}
|
|
}
|
|
this->num_length -= small_move;
|
|
}
|
|
|
|
void int2048::NTTTransform(__int128_t *a, int NTT_blocks,
|
|
bool inverse = false) {
|
|
for (int i = 1, j = 0; i < NTT_blocks; i++) {
|
|
int bit = NTT_blocks >> 1;
|
|
while (j >= bit) {
|
|
j -= bit;
|
|
bit >>= 1;
|
|
}
|
|
j += bit;
|
|
if (i < j) std::swap(a[i], a[j]);
|
|
}
|
|
for (int len = 2; len <= NTT_blocks; len <<= 1) {
|
|
__int128_t wlen = QuickPow(int2048::kNTTRoot, (int2048::kNTTMod - 1) / len);
|
|
if (inverse) wlen = QuickPow(wlen, int2048::kNTTMod - 2);
|
|
for (int i = 0; i < NTT_blocks; i += len) {
|
|
__int128_t w = 1;
|
|
for (int j = 0; j < len / 2; j++) {
|
|
__int128_t u = a[i + j], v = a[i + j + len / 2] * w % int2048::kNTTMod;
|
|
a[i + j] = (u + v) % int2048::kNTTMod;
|
|
a[i + j + len / 2] = (u - v + int2048::kNTTMod) % int2048::kNTTMod;
|
|
(w *= wlen) %= int2048::kNTTMod;
|
|
}
|
|
}
|
|
}
|
|
if (inverse) {
|
|
__int128_t inv = QuickPow(NTT_blocks, int2048::kNTTMod - 2);
|
|
for (int i = 0; i < NTT_blocks; i++) (a[i] *= inv) %= int2048::kNTTMod;
|
|
}
|
|
}
|
|
inline void UnsignedMultiply(int2048 &A, const int2048 *pB,
|
|
bool inverse = false, int lenght_limit = 0) {
|
|
if (&A == pB) throw "UnsignedMultiply: A and B are the same object";
|
|
int blocks_of_A = ((A.num_length + int2048::kNum - 1) / int2048::kNum);
|
|
int blocks_of_B = ((pB->num_length + int2048::kNum - 1) / int2048::kNum);
|
|
if (inverse) {
|
|
assert(pB->num_length % int2048::kNum == 0);
|
|
lenght_limit = std::min(lenght_limit, pB->num_length);
|
|
blocks_of_B = lenght_limit / int2048::kNum;
|
|
// assert(blocks_of_B ==
|
|
// ((pB->num_length + int2048::kNum - 1) / int2048::kNum));
|
|
}
|
|
int max_blocks = blocks_of_A + blocks_of_B;
|
|
int NTT_blocks = 2;
|
|
while (NTT_blocks < (max_blocks << 1)) NTT_blocks <<= 1;
|
|
__int128_t *pDA = new __int128_t[NTT_blocks]();
|
|
__int128_t *pDB = new __int128_t[NTT_blocks]();
|
|
__int128_t *pDC = new __int128_t[NTT_blocks]();
|
|
if (!inverse) {
|
|
for (int i = 0; i < blocks_of_A; i++) {
|
|
pDA[i << 1] = A.val[i] % int2048::kNTTBlockBase;
|
|
pDA[(i << 1) | 1] = A.val[i] / int2048::kNTTBlockBase;
|
|
}
|
|
for (int i = 0; i < blocks_of_B; i++) {
|
|
pDB[i << 1] = pB->val[i] % int2048::kNTTBlockBase;
|
|
pDB[(i << 1) | 1] = pB->val[i] / int2048::kNTTBlockBase;
|
|
}
|
|
} else {
|
|
assert(A.num_length % int2048::kNum == 0);
|
|
assert(pB->num_length % int2048::kNum == 0);
|
|
pDA[0] = A.val[0];
|
|
for (int i = 1; i < blocks_of_A; i++) {
|
|
pDA[i << 1] = A.val[i] % int2048::kNTTBlockBase;
|
|
pDA[(i << 1) - 1] = A.val[i] / int2048::kNTTBlockBase;
|
|
}
|
|
pDB[0] = pB->val[0];
|
|
for (int i = 1; i < blocks_of_B; i++) {
|
|
pDB[i << 1] = pB->val[i] % int2048::kNTTBlockBase;
|
|
pDB[(i << 1) - 1] = pB->val[i] / int2048::kNTTBlockBase;
|
|
}
|
|
}
|
|
A.NTTTransform(pDA, NTT_blocks);
|
|
A.NTTTransform(pDB, NTT_blocks);
|
|
for (int i = 0; i < NTT_blocks; i++)
|
|
pDC[i] = (pDA[i] * pDB[i]) % int2048::kNTTMod;
|
|
A.NTTTransform(pDC, NTT_blocks, true);
|
|
if (!inverse) {
|
|
for (int i = 0; i < NTT_blocks - 1; i++) {
|
|
pDC[i + 1] += pDC[i] / int2048::kNTTBlockBase;
|
|
pDC[i] %= int2048::kNTTBlockBase;
|
|
}
|
|
if (pDC[NTT_blocks - 1] >= int2048::kNTTBlockBase)
|
|
throw "UnsignedMultiply: NTT result overflow";
|
|
} else {
|
|
for (int i = NTT_blocks - 1; i > 0; i--) {
|
|
if (i - 1 >= 0) pDC[i - 1] += pDC[i] / int2048::kNTTBlockBase;
|
|
pDC[i] %= int2048::kNTTBlockBase;
|
|
}
|
|
if (pDC[0] >= int2048::kNTTBlockBase)
|
|
throw "UnsignedMultiply: NTT result overflow";
|
|
}
|
|
int flag_store = A.flag;
|
|
A.ClaimMem(NTT_blocks * 4);
|
|
memset(A.val, 0, A.buf_length * sizeof(int));
|
|
if (!inverse) {
|
|
for (int i = 0; i < NTT_blocks / 2; i++) {
|
|
A.val[i] = pDC[(i << 1) | 1] * int2048::kNTTBlockBase + pDC[i << 1];
|
|
}
|
|
} else {
|
|
A.val[0] = pDC[0];
|
|
for (int i = 1; i < NTT_blocks / 2; i++) {
|
|
A.val[i] = pDC[(i << 1) - 1] * int2048::kNTTBlockBase + pDC[i << 1];
|
|
}
|
|
}
|
|
A.num_length = NTT_blocks * 4;
|
|
if (!inverse) {
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
while (A.val[(A.num_length - 1) / int2048::kNum] /
|
|
kPow10[(A.num_length - 1) % int2048::kNum] ==
|
|
0) {
|
|
A.num_length--;
|
|
if (A.num_length == 0) {
|
|
A.num_length = 1;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
while (A.num_length > int2048::kNum &&
|
|
A.val[A.num_length / int2048::kNum - 1] == 0)
|
|
A.num_length -= int2048::kNum;
|
|
A.ClaimMem(A.num_length);
|
|
}
|
|
delete[] pDA;
|
|
delete[] pDB;
|
|
delete[] pDC;
|
|
}
|
|
|
|
int2048 &int2048::Multiply(const int2048 &B) {
|
|
// 实现复合乘法逻辑
|
|
const int2048 *pB = &B;
|
|
if (this == &B) pB = new int2048(B);
|
|
if ((this->num_length == 1 && this->val[0] == 0) ||
|
|
(pB->num_length == 1 && pB->val[0] == 0)) {
|
|
*this = std::move(int2048(0));
|
|
if (pB != &B) delete pB;
|
|
return *this;
|
|
}
|
|
this->flag = this->flag * pB->flag;
|
|
UnsignedMultiply(*this, pB);
|
|
if (pB != &B) delete pB;
|
|
return *this;
|
|
}
|
|
|
|
int2048 Multiply(int2048 A, const int2048 &B) {
|
|
// 实现乘法逻辑
|
|
return std::move(A.Multiply(B));
|
|
}
|
|
|
|
int2048 &int2048::operator*=(const int2048 &B) {
|
|
// 实现复合乘法逻辑
|
|
return this->Multiply(B);
|
|
}
|
|
|
|
int2048 operator*(int2048 A, const int2048 &B) {
|
|
// 实现乘法逻辑
|
|
A.Multiply(B);
|
|
return std::move(A);
|
|
}
|
|
void int2048::ProcessHalfBlock() {
|
|
assert(this->num_length % int2048::kNum == 0);
|
|
this->ClaimMem(this->num_length + int2048::kNum);
|
|
this->num_length = this->num_length + int2048::kNum;
|
|
assert(this->num_length % int2048::kNum == 0);
|
|
int blocks_num = this->num_length / int2048::kNum;
|
|
for (int i = blocks_num - 1; i >= 1; i--) {
|
|
val[i] /= int2048::kNTTBlockBase;
|
|
val[i] += (val[i - 1] % int2048::kNTTBlockBase) * int2048::kNTTBlockBase;
|
|
}
|
|
val[0] /= int2048::kNTTBlockBase;
|
|
}
|
|
void int2048::RestoreHalfBlock() {
|
|
assert(this->num_length % int2048::kNum == 0);
|
|
int blocks_num = this->num_length / int2048::kNum;
|
|
for (int i = 0; i < blocks_num - 1; i++) {
|
|
val[i] = ((long long)val[i] * int2048::kNTTBlockBase) % int2048::kStoreBase;
|
|
val[i] += val[i + 1] / int2048::kNTTBlockBase;
|
|
}
|
|
val[blocks_num - 1] =
|
|
((long long)val[blocks_num - 1] * int2048::kNTTBlockBase) %
|
|
int2048::kStoreBase;
|
|
while (this->num_length > 0 && val[this->num_length / int2048::kNum - 1] == 0)
|
|
this->num_length -= int2048::kNum;
|
|
}
|
|
inline void UnsignedDivide(int2048 &A, const int2048 *pB) {
|
|
int L1 = A.num_length, L2 = pB->num_length;
|
|
if (&A == pB) throw "UnsignedDivide: A and B are the same object";
|
|
if (2 * L1 - L2 - 1 < 0) {
|
|
A = std::move(int2048(0));
|
|
return;
|
|
}
|
|
if (UnsignedCmp(A, *pB) < 0) {
|
|
A = std::move(int2048(0));
|
|
return;
|
|
}
|
|
/**
|
|
* Now pre-process has done. We can start the main algorithm:
|
|
* 1. Convert B to scientific counting method and process the index.
|
|
* 2. In the state of reversing, calculate 1/B' using Newton-Raphson method.
|
|
* 3. Reverse the iterative results again and calculate the answer.
|
|
*
|
|
* Warning: in reversed mode, num_length has no exact meaning, just operate a
|
|
* block as a whole
|
|
*/
|
|
int2048 origin_A(A);
|
|
int pow_A = (L1 + int2048::kNum - 1) / int2048::kNum - 1;
|
|
int pow_B = (L2 + int2048::kNum - 1) / int2048::kNum - 1;
|
|
// pow_B+1 is the number of blocks (with number) of B'
|
|
int2048 inverse_B(*pB);
|
|
inverse_B.num_length = (inverse_B.num_length + int2048::kNum - 1) /
|
|
int2048::kNum * int2048::kNum;
|
|
for (int i = 0; (i << 1) < (pow_B + 1); i++)
|
|
std::swap(inverse_B.val[i], inverse_B.val[pow_B - i]);
|
|
int2048 x(
|
|
int2048::kStoreBase *
|
|
(long long)std::max(1, int2048::kStoreBase / (inverse_B.val[0] + 1)));
|
|
assert(x.val[1] == std::max(1, int2048::kStoreBase / (inverse_B.val[0] + 1)));
|
|
x.num_length = 2 * int2048::kNum;
|
|
int *store[2];
|
|
store[0] = new int[pow_A + 5]();
|
|
store[1] = new int[pow_A + 5]();
|
|
int tot = 0;
|
|
for (int i = 0; i < pow_A + 1; i++) {
|
|
store[0][i] = A.val[i];
|
|
store[1][i] = -1;
|
|
}
|
|
int inverseB_error = 0;
|
|
if (inverse_B.val[0] >= int2048::kNTTBlockBase) {
|
|
inverseB_error = 1;
|
|
inverse_B.ProcessHalfBlock();
|
|
}
|
|
while (true) {
|
|
int2048 inverse_two(2), tmp_x(x);
|
|
inverse_two.num_length = int2048::kNum;
|
|
int tmp_x_error = 0;
|
|
if (tmp_x.val[0] >= int2048::kNTTBlockBase) {
|
|
tmp_x_error = 1;
|
|
tmp_x.ProcessHalfBlock();
|
|
}
|
|
assert(tmp_x.num_length % int2048::kNum == 0);
|
|
assert(inverse_B.num_length % int2048::kNum == 0);
|
|
UnsignedMultiply(tmp_x, &inverse_B, true,
|
|
tmp_x.num_length + 3 * int2048::kNum);
|
|
for (int i = 0; i < tmp_x_error + inverseB_error; i++)
|
|
tmp_x.RestoreHalfBlock();
|
|
UnsignedMinus(inverse_two, &tmp_x, true);
|
|
int inverse_two_error = 0, x_error = 0;
|
|
if (inverse_two.val[0] >= int2048::kNTTBlockBase) {
|
|
inverse_two_error = 1;
|
|
inverse_two.ProcessHalfBlock();
|
|
}
|
|
if (x.val[0] >= int2048::kNTTBlockBase) {
|
|
x_error = 1;
|
|
x.ProcessHalfBlock();
|
|
}
|
|
UnsignedMultiply(x, &inverse_two, true, inverse_two.num_length);
|
|
for (int i = 0; i < x_error + inverse_two_error; i++) x.RestoreHalfBlock();
|
|
/**
|
|
* now x is the next x, store[tot] stores last x, store[tot^1] stores the x
|
|
* previous to store[x]
|
|
*/
|
|
int blocks_of_x = (x.num_length + int2048::kNum - 1) / int2048::kNum;
|
|
if (blocks_of_x > pow_A + 3) {
|
|
x.ClaimMem((pow_A + 3) * int2048::kNum);
|
|
x.num_length = (pow_A + 3) * int2048::kNum;
|
|
blocks_of_x = pow_A + 3;
|
|
}
|
|
bool pre_same = true, pre_pre_same = true;
|
|
for (int i = 0; i < pow_A + 3; i++) {
|
|
if (store[tot][i] != (i < blocks_of_x ? x.val[i] : 0)) {
|
|
pre_same = false;
|
|
break;
|
|
}
|
|
}
|
|
for (int i = 0; i < pow_A + 3; i++) {
|
|
if (store[tot ^ 1][i] != (i < blocks_of_x ? x.val[i] : 0)) {
|
|
pre_pre_same = false;
|
|
break;
|
|
}
|
|
}
|
|
if (pre_pre_same || pre_same) break;
|
|
tot ^= 1;
|
|
for (int i = 0; i < pow_A + 3; i++) {
|
|
if (i < blocks_of_x)
|
|
store[tot][i] = x.val[i];
|
|
else
|
|
store[tot][i] = 0;
|
|
}
|
|
// std::cerr << "length of x" << x.num_length << std::endl;
|
|
// fprintf(stderr, "x: ");
|
|
// for (int i = 0; i < blocks_of_x; i++) fprintf(stderr, "%08d ", x.val[i]);
|
|
// fprintf(stderr, "\n");
|
|
}
|
|
delete[] store[0];
|
|
delete[] store[1];
|
|
/**
|
|
* Now reverse x back.
|
|
*/
|
|
int blocks_of_x = (x.num_length + int2048::kNum - 1) / int2048::kNum;
|
|
int pow_x = blocks_of_x - 1;
|
|
for (int i = 0; i < blocks_of_x / 2; i++)
|
|
std::swap(x.val[i], x.val[blocks_of_x - i - 1]);
|
|
x.num_length = blocks_of_x * int2048::kNum;
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
/*Now get the accurate x.num_length for future computing*/
|
|
while (x.num_length > 0 &&
|
|
x.val[(x.num_length - 1) / int2048::kNum] /
|
|
kPow10[(x.num_length - 1) % int2048::kNum] ==
|
|
0)
|
|
x.num_length--;
|
|
UnsignedMultiply(A, &x);
|
|
A.RightMoveBy((pow_B + pow_x) * int2048::kNum);
|
|
/*Now we begin to process error*/
|
|
int2048 tmp(*pB), kOne(1);
|
|
UnsignedMultiply(tmp, &A);
|
|
while (UnsignedCmp(origin_A, tmp) < 0) {
|
|
UnsignedMinus(A, &kOne);
|
|
UnsignedMinus(tmp, pB);
|
|
}
|
|
UnsignedMinus(origin_A, &tmp);
|
|
while (UnsignedCmp(origin_A, *pB) >= 0) {
|
|
UnsignedAdd(A, &kOne);
|
|
UnsignedMinus(origin_A, pB);
|
|
}
|
|
}
|
|
int2048 &int2048::Divide(const int2048 &B) {
|
|
if (this == &B) {
|
|
*this = std::move(int2048(1));
|
|
return *this;
|
|
}
|
|
if (B.num_length == 1 && B.val[0] == 0) {
|
|
*this = std::move(int2048(0));
|
|
return *this;
|
|
// throw "Divide: divide by zero";
|
|
}
|
|
int2048 origin_A(*this);
|
|
int flag_store = this->flag * B.flag;
|
|
UnsignedDivide(*this, &B);
|
|
this->flag = flag_store;
|
|
if (this->flag == -1) {
|
|
if (origin_A != (*this) * B) {
|
|
*this -= 1;
|
|
}
|
|
}
|
|
if (this->num_length == 1 && this->val[0] == 0) this->flag = 1;
|
|
return *this;
|
|
}
|
|
int2048 Divide(int2048 A, const int2048 &B) {
|
|
A.Divide(B);
|
|
return std::move(A);
|
|
}
|
|
|
|
int2048 &int2048::operator/=(const int2048 &B) {
|
|
// 实现复合除法逻辑
|
|
return this->Divide(B);
|
|
}
|
|
|
|
int2048 operator/(int2048 A, const int2048 &B) {
|
|
// 实现除法逻辑
|
|
A.Divide(B);
|
|
return std::move(A);
|
|
}
|
|
|
|
int2048 &int2048::operator%=(const int2048 &B) {
|
|
// 实现复合取模逻辑
|
|
int2048 C(*this);
|
|
C.Divide(B);
|
|
this->minus(C.Multiply(B));
|
|
return *this;
|
|
}
|
|
|
|
int2048 operator%(int2048 A, const int2048 &B) {
|
|
// 实现取模逻辑
|
|
int2048 C(A);
|
|
C.Divide(B);
|
|
A.minus(C.Multiply(B));
|
|
return std::move(A);
|
|
}
|
|
|
|
std::istream &operator>>(std::istream &stream, int2048 &V) {
|
|
// 实现输入运算符逻辑
|
|
std::string v_str;
|
|
stream >> v_str;
|
|
V.read(v_str);
|
|
return stream;
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &stream, const int2048 &v) {
|
|
// 实现输出运算符逻辑
|
|
char *buf = new char[v.num_length + 5];
|
|
char *p = buf;
|
|
if (v.flag == -1) *p++ = '-';
|
|
const static int kPow10[9] = {1, 10, 100, 1000, 10000,
|
|
100000, 1000000, 10000000, 100000000};
|
|
for (int i = v.num_length - 1; i >= 0; i--)
|
|
*p++ =
|
|
char('0' + v.val[i / int2048::kNum] / kPow10[i % int2048::kNum] % 10);
|
|
*p++ = 0;
|
|
stream << buf;
|
|
delete[] buf;
|
|
return stream;
|
|
}
|
|
|
|
bool operator==(const int2048 &A, const int2048 &B) {
|
|
// 实现等于运算符逻辑
|
|
if (A.flag != B.flag) return false;
|
|
return UnsignedCmp(A, B) == 0;
|
|
}
|
|
|
|
bool operator!=(const int2048 &A, const int2048 &B) {
|
|
// 实现不等于运算符逻辑
|
|
if (A.flag != B.flag) return true;
|
|
return UnsignedCmp(A, B) != 0;
|
|
}
|
|
|
|
bool operator<(const int2048 &A, const int2048 &B) {
|
|
// 实现小于运算符逻辑
|
|
if (A.flag != B.flag) return A.flag < B.flag;
|
|
int cmp = UnsignedCmp(A, B);
|
|
if (A.flag == 1)
|
|
return cmp < 0;
|
|
else
|
|
return cmp > 0;
|
|
}
|
|
|
|
bool operator>(const int2048 &A, const int2048 &B) {
|
|
// 实现大于运算符逻辑
|
|
if (A.flag != B.flag) return A.flag > B.flag;
|
|
int cmp = UnsignedCmp(A, B);
|
|
if (A.flag == 1)
|
|
return cmp > 0;
|
|
else
|
|
return cmp < 0;
|
|
}
|
|
|
|
bool operator<=(const int2048 &A, const int2048 &B) {
|
|
// 实现小于等于运算符逻辑
|
|
if (A.flag != B.flag) return A.flag < B.flag;
|
|
int cmp = UnsignedCmp(A, B);
|
|
if (A.flag == 1)
|
|
return cmp <= 0;
|
|
else
|
|
return cmp >= 0;
|
|
}
|
|
|
|
bool operator>=(const int2048 &A, const int2048 &B) {
|
|
// 实现大于等于运算符逻辑
|
|
if (A.flag != B.flag) return A.flag > B.flag;
|
|
int cmp = UnsignedCmp(A, B);
|
|
if (A.flag == 1)
|
|
return cmp >= 0;
|
|
else
|
|
return cmp <= 0;
|
|
}
|
|
} // namespace sjtu
|