first version

This commit is contained in:
2023-09-27 23:24:21 +08:00
parent 503ebff62d
commit 1df5f0c6cc

View File

@ -5,8 +5,10 @@
#include <cassert>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <utility>
#include <vector>
@ -121,27 +123,98 @@ void ProcessSimpleCase() {
}
}
}
std::map<std::pair<int, int>, int>
position_to_variaID; // convert the (row,column) to variable ID in the
// equations,0 based
std::vector<std::pair<int, int> > variaID_to_position;
/**
* @brief The definition of function GenerateEquations()
*
* @details This function is designed to scan the game_map and map_status to
* generate the equations that will be used in Gaussian-Jordan Elimination.
* It returns a vector<vector<double>> equations, where equations[i] is the i th equation.
* It returns a vector<vector<double>> equations, where equations[i] is the i th
* equation.
*/
std::vector<std::vector<double> > GenerateEquations() {
variaID_to_position.clear();
position_to_variaID.clear();
int number_of_equations = 0;
std::set<std::pair<int, int> > can_form_equations;
for (int i = 0; i < rows; i++)
for (int j = 0; j < columns; j++)
if (map_status[i][j] == 2) {
const int dx[8] = {-1, -1, -1, 0, 0, 1, 1, 1},
dy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
bool there_is_unknown_nearby = false;
for (int k = 0; k < 8; k++) {
int nr = i + dx[k], nc = j + dy[k];
if (nr < 0 || nr >= rows || nc < 0 || nc >= columns) continue;
if (map_status[nr][nc] != 0) continue;
there_is_unknown_nearby = true;
std::pair<int, int> pos = std::make_pair(nr, nc);
if (position_to_variaID.find(pos) == position_to_variaID.end()) {
int cnt = variaID_to_position.size();
variaID_to_position.push_back(pos);
position_to_variaID[pos] = cnt;
}
}
number_of_equations += there_is_unknown_nearby;
if (there_is_unknown_nearby)
can_form_equations.insert(std::make_pair(i, j));
}
std::vector<std::vector<double> > equations;
std::vector<double> equa_template;
equa_template.resize(position_to_variaID.size() + 1);
for (int i = 0; i < equa_template.size(); i++) equa_template[i] = 0;
for (int i = 0; i < rows; i++)
for (int j = 0; j < columns; j++)
if (can_form_equations.count(std::make_pair(i, j)) == 1) {
assert('0' <= game_map[i][j] && game_map[i][j] <= '8');
equations.push_back(equa_template);
int nearby_mines = game_map[i][j] - '0';
const int dx[8] = {-1, -1, -1, 0, 0, 1, 1, 1},
dy[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
for (int k = 0; k < 8; k++) {
int x = i + dx[k], y = j + dy[k];
if (x >= 0 && x < rows && y >= 0 && y < columns) {
if (map_status[x][y] == -1) nearby_mines--;
}
}
equations[equations.size() - 1][position_to_variaID.size()] =
nearby_mines;
for (int k = 0; k < 8; k++) {
int nr = i + dx[k], nc = j + dy[k];
if (nr < 0 || nr >= rows || nc < 0 || nc >= columns) continue;
if (map_status[nr][nc] != 0) continue;
equations[equations.size() - 1]
[position_to_variaID[std::make_pair(nr, nc)]] = 1;
}
}
return equations;
}
/**
* @brief The definition of function GaussianJordanElimination()
* @details This function is designed to use Gaussian-Jordan Elimination to
* solve the equations. It returns the processed vector<vector<double>>
* &equations
* @param vector<vector<double>> &equations The equations to be solved
* @param vector<vector<double>> equations The equations to be solved
*/
const double eps = 1e-8;
std::vector<std::vector<double> > &GaussianJordanElimination(
std::vector<std::vector<double> > &equations) {
const double eps = 1e-6;
const int error_status_of_nearint = -0x3f3f3f3f;
inline int nearint(double v) {
int raw = v + 0.5;
if (abs(v - raw) < eps)
return raw;
else
return error_status_of_nearint;
}
std::vector<std::vector<double> > GaussianJordanElimination(
std::vector<std::vector<double> > equations) {
using std::abs;
int n = equations.size(), m = equations[0].size();
assert(n + 1 == m);
int n = equations.size();
if (n == 0) return equations;
int m = equations[0].size();
// assert(n + 1 == m);
for (int i = 0; i < n; i++) {
int pivot = i;
for (int j = i + 1; j < n; j++)
@ -158,6 +231,38 @@ std::vector<std::vector<double> > &GaussianJordanElimination(
}
return equations;
}
/**
* @brief The definition of function InterpretResult()
*
* @details This function is designed to interpret the result of Gaussian-Jordan
* Elimination
* @param std::vector<std::vector<double> > &equations The solved status of the
* equations
*/
void InterpretResult(std::vector<std::vector<double> > equations) {
int n = equations.size();
if (n == 0) return;
int m = equations[0].size();
for (int i = 0; i < n; i++) {
int number_of_1 = 0, number_of_non1 = 0, vid = -1;
for (int j = 0; j < m - 1; j++)
if (nearbyint(equations[i][j]) == 1) {
number_of_1++;
vid = j;
} else
number_of_non1++;
if (number_of_non1) continue;
if (number_of_1 != 1) continue;
int sol = nearbyint(equations[i][m - 1]);
if (sol == error_status_of_nearint) continue;
assert(sol == 0 || sol == 1);
assert(vid >= 0);
std::pair<int, int> pos = variaID_to_position[vid];
assert(map_status[pos.first][pos.second] == 0);
map_status[pos.first][pos.second] = 1;
no_mine_block_to_be_clicked.push(pos);
}
}
/**
* @brief The definition of function PreProcessData()
*
@ -181,14 +286,13 @@ void PreProcessData() {
}
// scan the map and process the simplest case
ProcessSimpleCase();
// find all unkown blocks that are adjacnent to clicked blocks and prepare
// 1.find all unkown blocks that are adjacnent to clicked blocks and prepare
// for Gaussian-Jordan Elimination.
// start Gaussian-Jordan Elimination
// interpret the result of Gaussian-Jordan Elimination,store the result in
// 2. start Gaussian-Jordan Elimination
// 3. interpret the result of Gaussian-Jordan Elimination,store the result in
// map_status and push the newly found block that definitely has no mine
// into no_mine_block_to_be_clicked
InterpretResult(GaussianJordanElimination(GenerateEquations()));
}
/**
* @brief The definition of function TotalRandomGuess()