win 8/10 and avg 800
This commit is contained in:
@ -13,7 +13,7 @@
|
||||
|
||||
|
||||
from util import manhattanDistance
|
||||
from game import Directions
|
||||
from game import Directions, Actions
|
||||
import random, util
|
||||
|
||||
from game import Agent
|
||||
@ -68,14 +68,56 @@ class ReflexAgent(Agent):
|
||||
to create a masterful evaluation function.
|
||||
"""
|
||||
# Useful information you can extract from a GameState (pacman.py)
|
||||
successorGameState = currentGameState.generatePacmanSuccessor(action)
|
||||
newPos = successorGameState.getPacmanPosition()
|
||||
newFood = successorGameState.getFood()
|
||||
newGhostStates = successorGameState.getGhostStates()
|
||||
newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]
|
||||
# successorGameState = currentGameState.generatePacmanSuccessor(action)
|
||||
# newPos = successorGameState.getPacmanPosition()
|
||||
# newFood = successorGameState.getFood()
|
||||
# newGhostStates = successorGameState.getGhostStates()
|
||||
# newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]
|
||||
capsules_position = currentGameState.getCapsules()
|
||||
food_positions = currentGameState.getFood().asList()
|
||||
action_vec=Actions.directionToVector(action)
|
||||
if action=="Stop":
|
||||
return random.uniform(-0.2,0.2)
|
||||
# print(f"action:{action}, action_vec:{action_vec}")
|
||||
current_ghost_positions = currentGameState.getGhostPositions()
|
||||
current_ghost_scared_times = [ghostState.scaredTimer for ghostState in currentGameState.getGhostStates()]
|
||||
not_scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]==0]
|
||||
scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>0]
|
||||
current_self_position = currentGameState.getPacmanPosition()
|
||||
def DotProduct(a,b):
|
||||
return a[0]*b[0]+a[1]*b[1]
|
||||
def CrossProduct(a,b):
|
||||
return a[0]*b[1]-a[1]*b[0]
|
||||
def EuclideanDistance(a,b):
|
||||
return ((a[0]-b[0])**2+(a[1]-b[1])**2)**0.5
|
||||
kInf=1e100
|
||||
def DistanceAnalysis(current_self_position,object_postion_list,flag="None"):
|
||||
if len(object_postion_list)==0:
|
||||
return 0
|
||||
if current_self_position in object_postion_list:
|
||||
return kInf
|
||||
res=0
|
||||
for obj_pos in object_postion_list:
|
||||
if flag=="Ghost" and util.manhattanDistance(current_self_position,obj_pos)>=5:
|
||||
continue
|
||||
vec_to_obj=(obj_pos[0]-current_self_position[0],obj_pos[1]-current_self_position[1])
|
||||
# print(f"vec_to_obj:{vec_to_obj}")
|
||||
# print(f"action:{action}, action_vec:{action_vec}")
|
||||
# print(f"EuclideanDistance(action_vec,(0,0)):{EuclideanDistance(action_vec,(0,0))}")
|
||||
# print(f"EuclideanDistance(vec_to_obj,(0,0)): {EuclideanDistance(vec_to_obj,(0,0))}")
|
||||
cos_theta=DotProduct(action_vec,vec_to_obj)/(EuclideanDistance(action_vec,(0,0))*EuclideanDistance(vec_to_obj,(0,0)))
|
||||
distance_to_obj=EuclideanDistance(current_self_position,obj_pos)
|
||||
res+=(cos_theta+1)/distance_to_obj
|
||||
return res
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
return successorGameState.getScore()
|
||||
da_for_foods=DistanceAnalysis(current_self_position,food_positions)
|
||||
da_for_unscared_ghosts=DistanceAnalysis(current_self_position,not_scared_ghosts_positions,"Ghost")
|
||||
da_for_scared_ghosts=DistanceAnalysis(current_self_position,scared_ghosts_positions)
|
||||
da_for_capsules=DistanceAnalysis(current_self_position,capsules_position)
|
||||
res=da_for_capsules*2-da_for_unscared_ghosts*2-da_for_scared_ghosts*0.2+da_for_foods*0.2
|
||||
res*=random.uniform(0.9, 1.1)
|
||||
# print(f"res:{res}")
|
||||
return res
|
||||
|
||||
def scoreEvaluationFunction(currentGameState: GameState):
|
||||
"""
|
||||
|
Reference in New Issue
Block a user