win 8/10 and avg 800

This commit is contained in:
2024-06-28 01:29:35 +00:00
parent 8b4acab284
commit 0af790dae9

View File

@ -13,7 +13,7 @@
from util import manhattanDistance
from game import Directions
from game import Directions, Actions
import random, util
from game import Agent
@ -68,14 +68,56 @@ class ReflexAgent(Agent):
to create a masterful evaluation function.
"""
# Useful information you can extract from a GameState (pacman.py)
successorGameState = currentGameState.generatePacmanSuccessor(action)
newPos = successorGameState.getPacmanPosition()
newFood = successorGameState.getFood()
newGhostStates = successorGameState.getGhostStates()
newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]
# successorGameState = currentGameState.generatePacmanSuccessor(action)
# newPos = successorGameState.getPacmanPosition()
# newFood = successorGameState.getFood()
# newGhostStates = successorGameState.getGhostStates()
# newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]
capsules_position = currentGameState.getCapsules()
food_positions = currentGameState.getFood().asList()
action_vec=Actions.directionToVector(action)
if action=="Stop":
return random.uniform(-0.2,0.2)
# print(f"action:{action}, action_vec:{action_vec}")
current_ghost_positions = currentGameState.getGhostPositions()
current_ghost_scared_times = [ghostState.scaredTimer for ghostState in currentGameState.getGhostStates()]
not_scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]==0]
scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>0]
current_self_position = currentGameState.getPacmanPosition()
def DotProduct(a,b):
return a[0]*b[0]+a[1]*b[1]
def CrossProduct(a,b):
return a[0]*b[1]-a[1]*b[0]
def EuclideanDistance(a,b):
return ((a[0]-b[0])**2+(a[1]-b[1])**2)**0.5
kInf=1e100
def DistanceAnalysis(current_self_position,object_postion_list,flag="None"):
if len(object_postion_list)==0:
return 0
if current_self_position in object_postion_list:
return kInf
res=0
for obj_pos in object_postion_list:
if flag=="Ghost" and util.manhattanDistance(current_self_position,obj_pos)>=5:
continue
vec_to_obj=(obj_pos[0]-current_self_position[0],obj_pos[1]-current_self_position[1])
# print(f"vec_to_obj:{vec_to_obj}")
# print(f"action:{action}, action_vec:{action_vec}")
# print(f"EuclideanDistance(action_vec,(0,0)):{EuclideanDistance(action_vec,(0,0))}")
# print(f"EuclideanDistance(vec_to_obj,(0,0)): {EuclideanDistance(vec_to_obj,(0,0))}")
cos_theta=DotProduct(action_vec,vec_to_obj)/(EuclideanDistance(action_vec,(0,0))*EuclideanDistance(vec_to_obj,(0,0)))
distance_to_obj=EuclideanDistance(current_self_position,obj_pos)
res+=(cos_theta+1)/distance_to_obj
return res
"*** YOUR CODE HERE ***"
return successorGameState.getScore()
da_for_foods=DistanceAnalysis(current_self_position,food_positions)
da_for_unscared_ghosts=DistanceAnalysis(current_self_position,not_scared_ghosts_positions,"Ghost")
da_for_scared_ghosts=DistanceAnalysis(current_self_position,scared_ghosts_positions)
da_for_capsules=DistanceAnalysis(current_self_position,capsules_position)
res=da_for_capsules*2-da_for_unscared_ghosts*2-da_for_scared_ghosts*0.2+da_for_foods*0.2
res*=random.uniform(0.9, 1.1)
# print(f"res:{res}")
return res
def scoreEvaluationFunction(currentGameState: GameState):
"""