use guiding agent

This commit is contained in:
2024-07-22 19:10:40 +08:00
parent 1f217770b7
commit 2d55c655c3
3 changed files with 164 additions and 2 deletions

View File

@ -6,6 +6,165 @@ import copy
import torch
import numpy as np
import os
from util import *
import util
from pacman import GameState
from game import Directions, Actions
class Agent:
"""
An agent must define a getAction method, but may also define the
following methods which will be called if they exist:
def registerInitialState(self, state): # inspects the starting state
"""
def __init__(self, index=0):
self.index = index
def getAction(self, state):
"""
The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and
must return an action from Directions.{North, South, East, West, Stop}
"""
raiseNotDefined()
def betterEvaluationFunction(currentGameState: GameState):
"""
Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable
evaluation function (question 5).
DESCRIPTION: <write something here so we know what you did>
"""
# Useful information you can extract from a GameState (pacman.py)
if currentGameState.isLose():
return -500
if currentGameState.isWin():
return 500
kInf=1e100
capsules_position = currentGameState.getCapsules()
current_pos = currentGameState.getPacmanPosition()
food_positions = currentGameState.getFood().asList()
# print(f"action:{action}, action_vec:{action_vec}")
current_ghost_positions = currentGameState.getGhostPositions()
current_ghost_scared_times = [ghostState.scaredTimer for ghostState in currentGameState.getGhostStates()]
not_scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]==0]
scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>0 and current_ghost_scared_times[i]<=1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2]
edible_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2]
current_self_position = currentGameState.getPacmanPosition()
def DotProduct(a,b):
return a[0]*b[0]+a[1]*b[1]
def CrossProduct(a,b):
return a[0]*b[1]-a[1]*b[0]
def EuclideanDistance(a,b):
return ((a[0]-b[0])**2+(a[1]-b[1])**2)**0.5
def DistanceAnalysis(current_self_position,object_postion_list,flag="None"):
if len(object_postion_list)==0:
return 0
if current_self_position in object_postion_list:
return kInf
res=0
for obj_pos in object_postion_list:
if flag=="Ghost" and util.manhattanDistance(current_self_position,obj_pos)>=6:
continue
distance_to_obj=util.manhattanDistance(current_self_position,obj_pos)
res=max(res,1/distance_to_obj)
return res
da_for_foods=DistanceAnalysis(current_self_position,food_positions)
da_for_unscared_ghosts=DistanceAnalysis(current_self_position,not_scared_ghosts_positions,"Ghost")
da_for_scared_ghosts=DistanceAnalysis(current_self_position,scared_ghosts_positions)
da_for_capsules=DistanceAnalysis(current_self_position,capsules_position)
da_for_edible_ghosts=DistanceAnalysis(current_self_position,edible_ghosts_positions)
res=da_for_capsules*2-da_for_unscared_ghosts*2-da_for_scared_ghosts*0.2+da_for_foods*0.2+da_for_edible_ghosts*1
if da_for_unscared_ghosts<1/6:
res+=(da_for_foods*0.2+da_for_edible_ghosts*1)*5
# res*=random.uniform(0.9, 1.1)
res*=100
global last_score
res+=(currentGameState.getScore()-last_score)*10
# print(f"res:{res}")
return res
class MultiAgentSearchAgent(Agent):
"""
This class provides some common elements to all of your
multi-agent searchers. Any methods defined here will be available
to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent.
You *do not* need to make any changes here, but you can if you want to
add functionality to all your adversarial search agents. Please do not
remove anything, however.
Note: this is an abstract class: one that should not be instantiated. It's
only partially specified, and designed to be extended. Agent (game.py)
is another abstract class.
"""
def __init__(self, evalFn = 'scoreEvaluationFunction', depth = '2'):
self.index = 0 # Pacman is always agent index 0
self.evaluationFunction = betterEvaluationFunction
self.depth = int(depth)
last_score=0
class ExpectimaxAgent(MultiAgentSearchAgent):
"""
Your expectimax agent (question 4)
"""
def ExpectMaxSearch(self,gameState: GameState,depth_remain:int,agentIndex:int) -> tuple[int, list[Actions]]:
if depth_remain==0:
# print(f"depth_remain:{depth_remain}")
# print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}")
return self.evaluationFunction(gameState),[]
legal_actions = gameState.getLegalActions(agentIndex)
if len(legal_actions)==0:
# print(f"depth_remain:{depth_remain}")
# print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}")
return self.evaluationFunction(gameState),[]
kInf=1e100
res_action=[]
res_val=0
if agentIndex==0:
# Max
res_val = -kInf
for action in legal_actions:
successorGameState = gameState.generateSuccessor(agentIndex,action)
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
if action=="Stop":
val-=100
if val>res_val:
res_val=val
# print(f"action:{action}, action_list:{action_list}")
res_action=[action]+action_list
else:
# Mins
res_val = kInf
val_list=[]
for action in legal_actions:
successorGameState = gameState.generateSuccessor(agentIndex,action)
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
val_list.append(val)
if val<res_val:
res_val=val
res_action=[action]+action_list
res_val=sum(val_list)/len(val_list)
# print(f"depth_remain:{depth_remain}")
# print(f"returning {res_val}, {res_action}")
return res_val,res_action
def getAction(self, gameState: GameState):
"""
Returns the expectimax action using self.depth and self.evaluationFunction
All ghosts should be modeled as choosing uniformly at random from their
legal moves.
"""
global last_score
last_score=gameState.getScore()
stat = self.ExpectMaxSearch(gameState,self.depth,0)
# print(f"stat:{stat}")
return stat[1][0]
class PacmanDeepQAgent(PacmanQAgent):
def __init__(self, layout_input="smallGrid", target_update_rate=300, doubleQ=True, **args):
@ -41,6 +200,7 @@ class PacmanDeepQAgent(PacmanQAgent):
self.doubleQ = doubleQ
if self.doubleQ:
self.target_update_rate = -1
self.guiding_agent = ExpectimaxAgent()
def get_state_dim(self, layout):
pac_ft_size = 2

View File

@ -11,7 +11,7 @@ from torch import tensor, double, optim
from torch.nn.functional import relu, mse_loss
import torch
kProductionMode=False
kProductionMode=True
class DeepQNetwork(Module):
"""
A model that uses a Deep Q-value Network (DQN) to approximate Q(s,a) as part

View File

@ -115,7 +115,9 @@ class QLearningAgent(ReinforcementAgent):
return None
if util.flipCoin(self.epsilon):
return random.choice(legalActions)
# return random.choice(legalActions)
# now using guiding agent
return self.guiding_agent.getAction(state)
else:
return self.computeActionFromQValues(state)