fix: a star in docs

This commit is contained in:
zsq259
2024-06-25 15:51:24 +08:00
parent 1b3eba4657
commit 4c3e84486d
173 changed files with 10755 additions and 6 deletions

4
.gitignore vendored
View File

@ -1,2 +1,4 @@
multiagent1/
__pycache__/
logic1/
__pycache__/
.gitignore

View File

@ -63,4 +63,8 @@ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/f
### MultiAgent
相关文件和介绍在 [multiagent](https://github.com/ACMClassCourse-2023/PPCA-AIPacMan-2024/tree/main/multiagent) 文件夹下。
相关文件和介绍在 [multiagent](https://github.com/ACMClassCourse-2023/PPCA-AIPacMan-2024/tree/main/multiagent) 文件夹下。
### Logic
相关文件和介绍在 [logic](https://github.com/ACMClassCourse-2023/PPCA-AIPacMan-2024/tree/main/logic) 文件夹下。

96
logic/README.md Normal file
View File

@ -0,0 +1,96 @@
~~coming soon~~
#### 介绍
在这个项目中,你将编写简单的 Python 函数,生成描述 Pacman 物理状态(记为 **pacphysics**)的逻辑句子。然后,你将使用 SAT 求解器 pycosat解决与 规划(生成动作序列以到达目标位置并吃掉所有点)、定位(根据本地传感器模型在地图中找到自己)、建图(从零开始构建地图)以及 SLAM同时定位与建图相关的逻辑推理任务。
你需要补全的代码文件有:
- logicPlan.py
你可以阅读并参考来帮助你实现代码的文件有:
- logic.py
- logicAgents.py以逻辑规划形式定义了Pacman在本项目中将遇到的两个具体问题。
- game.pyPacman世界的内部模拟器代码。你可能需要查看的是其中的Grid类。
你可以忽略其他支持文件。
#### The Expr Class
在本项目的第一部分,你将使用 `logic.py` 中定义的 `Expr` 类来构建命题逻辑句子。一个 `Expr` 对象被实现为一棵树,每个节点是逻辑运算符 $(\vee, \wedge, \neg, \to, \leftrightarrow )$ 叶子节点是文字A, B, C, D。以下是一个句子及其表示的示例
$$
(A \wedge B) \leftrightarrow (\neg C \vee D)
$$
![](https://inst.eecs.berkeley.edu/~cs188/sp24/assets/projects/logic_tree.png)
要实例化名为 'A' 的符号,请像这样调用构造函数:
```python
A = Expr('A')
```
`Expr` 类允许你使用 Python 运算符来构建这些表达式。以下是可用的 Python 运算符及其含义:
- `~A`: $\neg A$
- `A & B`: $A \wedge B$
- `A | B`: $A \vee B$
- `A >> B`: $A \to B$
- `A % B`: $A \leftrightarrow B$
因此要构建表达式 $A \wedge B$,你可以这样做:
```python
A = Expr('A')
B = Expr('B')
A_and_B = A & B
```
(请注意,该示例中赋值运算符左边 `A` 只是一个 Python 变量名,即 `symbol1 = Expr('A')` 也可以正常工作。)
**关于 conjoin 和 disjoin**
在可能的情况下,必须使用 `conjoin``disjoin` 操作符。`conjoin` 创建一个链式的 `&`(逻辑与)表达式,`disjoin` 创建一个链式的 `|`(逻辑或)表达式。假设你想检查条件 A、B、C、D 和 E 是否全部为真。简单的实现方法是写 `condition = A & B & C & D & E`,但这实际上会转换为 `((((A & B) & C) & D) & E)`,这会创建一个非常嵌套的逻辑树(见下图中的(1)),调试起来非常困难。相反,`conjoin` 可以创建一个扁平的树(见下图中的(2))。
![](https://inst.eecs.berkeley.edu/~cs188/sp24/assets/projects/conjoin_diagram.png)
#### 命题符号命名(重要!)
在项目的后续部分,请使用以下变量命名规则:
- 引入变量时,必须以大写字母开头(包括 `Expr`)。
- 变量名中只能出现以下字符:`A-Z``a-z``0-9``_``^``[``]`
- 逻辑连接字符 (`&`, `|`) 不得出现在变量名中。例如,`Expr('A & B')` 是非法的,因为它试图创建一个名为 `'A & B'` 的常量符号。应使用 `Expr('A') & Expr('B')` 来创建逻辑表达式。
**Pacphysics 符号**
- `PropSymbolExpr(pacman_str, x, y, time=t)`:表示 Pacman 是否在时间 `t` 处于 (x,y),写作 `P[x,y]_t`
- `PropSymbolExpr(wall_str, x, y)`:表示 `(x,y)` 处是否有墙,写作 `WALL[x,y]`
- `PropSymbolExpr(action, time=t)`:表示 Pacman 是否在时间 `t` 采取 `action` 动作,其中 `action``DIRECTIONS` 的元素,例如 North_t`。
- 一般情况下,`PropSymbolExpr(str, a1, a2, a3, a4, time=a5)` 创建表达式 `str[a1,a2,a3,a4]_a5`,其中 `str` 是一个字符串。
`logic.py` 文件中有关于 `Expr` 类的更多详细文档。
#### SAT 求解器
一个SAT可满足性求解器接受编码世界规则的逻辑表达式并返回一个满足该表达式的模型逻辑符号的真值分配如果存在这样的模型。为了高效地从表达式中找到可能的模型我们利用 [pycosat](https://pypi.org/project/pycosat/) 模块,这是 [picoSAT](https://fmv.jku.at/picosat/) 库的Python包装器。
运行`conda install pycosat` 安装。
**测试pycosat安装**
`logic` 目录下运行:
```
python pycosat_test.py
```
这应该输出:
```
[1, -2, -3, -4, 5]
```
如果你在设置过程中遇到问题,请告知我们。这对于完成项目至关重要,我们不希望你在安装过程中浪费时间。
#### Q1: Logic Warm-up

1
logic/VERSION Normal file
View File

@ -0,0 +1 @@
v1.2

644
logic/agents.py Normal file
View File

@ -0,0 +1,644 @@
# agents.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""Implement Agents and Environments (Chapters 1-2).
Code originally from https://code.google.com/p/aima-python/
The class hierarchies are as follows:
Thing ## A physical object that can exist in an environment
Agent
Wumpus
Dirt
Wall
...
Environment ## An environment holds objects, runs simulations
XYEnvironment
VacuumEnvironment
WumpusEnvironment
An agent program is a callable instance, taking percepts and choosing actions
SimpleReflexAgentProgram
...
EnvGUI ## A window with a graphical representation of the Environment
EnvToolbar ## contains buttons for controlling EnvGUI
EnvCanvas ## Canvas to display the environment of an EnvGUI
"""
# TO DO:
# Implement grabbing correctly.
# When an object is grabbed, does it still have a location?
# What if it is released?
# What if the grabbed or the grabber is deleted?
# What if the grabber moves?
#
# Speed control in GUI does not have any effect -- fix it.
from logic_utils import *
import random, copy
#______________________________________________________________________________
class Thing(object):
"""This represents any physical object that can appear in an Environment.
You subclass Thing to get the things you want. Each thing can have a
.__name__ slot (used for output only)."""
def __repr__(self):
return '<%s>' % getattr(self, '__name__', self.__class__.__name__)
def is_alive(self):
"Things that are 'alive' should return true."
return hasattr(self, 'alive') and self.alive
def show_state(self):
"Display the agent's internal state. Subclasses should override."
print("I don't know how to show_state.")
def display(self, canvas, x, y, width, height):
# Do we need this?
"Display an image of this Thing on the canvas."
pass
class Agent(Thing):
"""An Agent is a subclass of Thing with one required slot,
.program, which should hold a function that takes one argument, the
percept, and returns an action. (What counts as a percept or action
will depend on the specific environment in which the agent exists.)
Note that 'program' is a slot, not a method. If it were a method,
then the program could 'cheat' and look at aspects of the agent.
It's not supposed to do that: the program can only look at the
percepts. An agent program that needs a model of the world (and of
the agent itself) will have to build and maintain its own model.
There is an optional slot, .performance, which is a number giving
the performance measure of the agent in its environment."""
def __init__(self, program=None):
self.alive = True
self.bump = False
if program is None:
def program(percept):
return raw_input('Percept=%s; action? ' % percept)
assert callable(program)
self.program = program
def can_grab(self, thing):
"""Returns True if this agent can grab this thing.
Override for appropriate subclasses of Agent and Thing."""
return False
def TraceAgent(agent):
"""Wrap the agent's program to print its input and output. This will let
you see what the agent is doing in the environment."""
old_program = agent.program
def new_program(percept):
action = old_program(percept)
print('%s perceives %s and does %s' % (agent, percept, action))
return action
agent.program = new_program
return agent
#______________________________________________________________________________
def TableDrivenAgentProgram(table):
"""This agent selects an action based on the percept sequence.
It is practical only for tiny domains.
To customize it, provide as table a dictionary of all
{percept_sequence:action} pairs. [Fig. 2.7]"""
percepts = []
def program(percept):
percepts.append(percept)
action = table.get(tuple(percepts))
return action
return program
def RandomAgentProgram(actions):
"An agent that chooses an action at random, ignoring all percepts."
return lambda percept: random.choice(actions)
#______________________________________________________________________________
def SimpleReflexAgentProgram(rules, interpret_input):
"This agent takes action based solely on the percept. [Fig. 2.10]"
def program(percept):
state = interpret_input(percept)
rule = rule_match(state, rules)
action = rule.action
return action
return program
def ModelBasedReflexAgentProgram(rules, update_state):
"This agent takes action based on the percept and state. [Fig. 2.12]"
def program(percept):
program.state = update_state(program.state, program.action, percept)
rule = rule_match(program.state, rules)
action = rule.action
return action
program.state = program.action = None
return program
def rule_match(state, rules):
"Find the first rule that matches state."
for rule in rules:
if rule.matches(state):
return rule
#______________________________________________________________________________
loc_A, loc_B = (0, 0), (1, 0) # The two locations for the Vacuum world
def RandomVacuumAgent():
"Randomly choose one of the actions from the vacuum environment."
return Agent(RandomAgentProgram(['Right', 'Left', 'Suck', 'NoOp']))
def TableDrivenVacuumAgent():
"[Fig. 2.3]"
table = {((loc_A, 'Clean'),): 'Right',
((loc_A, 'Dirty'),): 'Suck',
((loc_B, 'Clean'),): 'Left',
((loc_B, 'Dirty'),): 'Suck',
((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
}
return Agent(TableDrivenAgentProgram(table))
def ReflexVacuumAgent():
"A reflex agent for the two-state vacuum environment. [Fig. 2.8]"
def program(percept):
(location, status) = percept
if status == 'Dirty': return 'Suck'
elif location == loc_A: return 'Right'
elif location == loc_B: return 'Left'
return Agent(program)
def ModelBasedVacuumAgent():
"An agent that keeps track of what locations are clean or dirty."
model = {loc_A: None, loc_B: None}
def program(percept):
"Same as ReflexVacuumAgent, except if everything is clean, do NoOp."
(location, status) = percept
model[location] = status ## Update the model here
if model[loc_A] == model[loc_B] == 'Clean': return 'NoOp'
elif status == 'Dirty': return 'Suck'
elif location == loc_A: return 'Right'
elif location == loc_B: return 'Left'
return Agent(program)
#______________________________________________________________________________
class Environment(object):
"""Abstract class representing an Environment. 'Real' Environment classes
inherit from this. Your Environment will typically need to implement:
percept: Define the percept that an agent sees.
execute_action: Define the effects of executing an action.
Also update the agent.performance slot.
The environment keeps a list of .things and .agents (which is a subset
of .things). Each agent has a .performance slot, initialized to 0.
Each thing has a .location slot, even though some environments may not
need this."""
def __init__(self):
self.things = []
self.agents = []
def thing_classes(self):
return [] ## List of classes that can go into environment
def percept(self, agent):
"Return the percept that the agent sees at this point. (Implement this.)"
abstract
def execute_action(self, agent, action):
"Change the world to reflect this action. (Implement this.)"
abstract
def default_location(self, thing):
"Default location to place a new thing with unspecified location."
return None
def exogenous_change(self):
"If there is spontaneous change in the world, override this."
pass
def is_done(self):
"By default, we're done when we can't find a live agent."
return not any(agent.is_alive() for agent in self.agents)
def step(self):
"""Run the environment for one time step. If the
actions and exogenous changes are independent, this method will
do. If there are interactions between them, you'll need to
override this method."""
if not self.is_done():
actions = [agent.program(self.percept(agent))
for agent in self.agents]
for (agent, action) in zip(self.agents, actions):
self.execute_action(agent, action)
self.exogenous_change()
def run(self, steps=1000):
"Run the Environment for given number of time steps."
for step in range(steps):
if self.is_done(): return
self.step()
def list_things_at(self, location, tclass=Thing):
"Return all things exactly at a given location."
return [thing for thing in self.things
if thing.location == location and isinstance(thing, tclass)]
def some_things_at(self, location, tclass=Thing):
"""Return true if at least one of the things at location
is an instance of class tclass (or a subclass)."""
return self.list_things_at(location, tclass) != []
def add_thing(self, thing, location=None):
"""Add a thing to the environment, setting its location. For
convenience, if thing is an agent program we make a new agent
for it. (Shouldn't need to override this."""
if not isinstance(thing, Thing):
thing = Agent(thing)
assert thing not in self.things, "Don't add the same thing twice"
thing.location = location or self.default_location(thing)
self.things.append(thing)
if isinstance(thing, Agent):
thing.performance = 0
self.agents.append(thing)
def delete_thing(self, thing):
"""Remove a thing from the environment."""
try:
self.things.remove(thing)
except ValueError as e:
print(e)
print(" in Environment delete_thing")
print(" Thing to be removed: %s at %s" % (thing, thing.location))
print(" from list: %s" % [(thing, thing.location)
for thing in self.things])
if thing in self.agents:
self.agents.remove(thing)
class XYEnvironment(Environment):
"""This class is for environments on a 2D plane, with locations
labelled by (x, y) points, either discrete or continuous.
Agents perceive things within a radius. Each agent in the
environment has a .location slot which should be a location such
as (0, 1), and a .holding slot, which should be a list of things
that are held."""
def __init__(self, width=10, height=10):
super(XYEnvironment, self).__init__()
update(self, width=width, height=height, observers=[])
def things_near(self, location, radius=None):
"Return all things within radius of location."
if radius is None: radius = self.perceptible_distance
radius2 = radius * radius
return [thing for thing in self.things
if distance2(location, thing.location) <= radius2]
perceptible_distance = 1
def percept(self, agent):
"By default, agent perceives things within a default radius."
return [self.thing_percept(thing, agent)
for thing in self.things_near(agent.location)]
def execute_action(self, agent, action):
agent.bump = False
if action == 'TurnRight':
agent.heading = self.turn_heading(agent.heading, -1)
elif action == 'TurnLeft':
agent.heading = self.turn_heading(agent.heading, +1)
elif action == 'Forward':
self.move_to(agent, vector_add(agent.heading, agent.location))
# elif action == 'Grab':
# things = [thing for thing in self.list_things_at(agent.location)
# if agent.can_grab(thing)]
# if things:
# agent.holding.append(things[0])
elif action == 'Release':
if agent.holding:
agent.holding.pop()
def thing_percept(self, thing, agent): #??? Should go to thing?
"Return the percept for this thing."
return thing.__class__.__name__
def default_location(self, thing):
return (random.choice(self.width), random.choice(self.height))
def move_to(self, thing, destination):
"Move a thing to a new location."
thing.bump = self.some_things_at(destination, Obstacle)
if not thing.bump:
thing.location = destination
for o in self.observers:
o.thing_moved(thing)
def add_thing(self, thing, location=(1, 1)):
super(XYEnvironment, self).add_thing(thing, location)
thing.holding = []
thing.held = None
for obs in self.observers:
obs.thing_added(thing)
def delete_thing(self, thing):
super(XYEnvironment, self).delete_thing(thing)
# Any more to do? Thing holding anything or being held?
for obs in self.observers:
obs.thing_deleted(thing)
def add_walls(self):
"Put walls around the entire perimeter of the grid."
for x in range(self.width):
self.add_thing(Wall(), (x, 0))
self.add_thing(Wall(), (x, self.height-1))
for y in range(self.height):
self.add_thing(Wall(), (0, y))
self.add_thing(Wall(), (self.width-1, y))
def add_observer(self, observer):
"""Adds an observer to the list of observers.
An observer is typically an EnvGUI.
Each observer is notified of changes in move_to and add_thing,
by calling the observer's methods thing_moved(thing)
and thing_added(thing, loc)."""
self.observers.append(observer)
def turn_heading(self, heading, inc):
"Return the heading to the left (inc=+1) or right (inc=-1) of heading."
return turn_heading(heading, inc)
class Obstacle(Thing):
"""Something that can cause a bump, preventing an agent from
moving into the same square it's in."""
pass
class Wall(Obstacle):
pass
#______________________________________________________________________________
## Vacuum environment
class Dirt(Thing):
pass
class VacuumEnvironment(XYEnvironment):
"""The environment of [Ex. 2.12]. Agent perceives dirty or clean,
and bump (into obstacle) or not; 2D discrete world of unknown size;
performance measure is 100 for each dirt cleaned, and -1 for
each turn taken."""
def __init__(self, width=10, height=10):
super(VacuumEnvironment, self).__init__(width, height)
self.add_walls()
def thing_classes(self):
return [Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent,
TableDrivenVacuumAgent, ModelBasedVacuumAgent]
def percept(self, agent):
"""The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None').
Unlike the TrivialVacuumEnvironment, location is NOT perceived."""
status = if_(self.some_things_at(agent.location, Dirt),
'Dirty', 'Clean')
bump = if_(agent.bump, 'Bump', 'None')
return (status, bump)
def execute_action(self, agent, action):
if action == 'Suck':
dirt_list = self.list_things_at(agent.location, Dirt)
if dirt_list != []:
dirt = dirt_list[0]
agent.performance += 100
self.delete_thing(dirt)
else:
super(VacuumEnvironment, self).execute_action(agent, action)
if action != 'NoOp':
agent.performance -= 1
class TrivialVacuumEnvironment(Environment):
"""This environment has two locations, A and B. Each can be Dirty
or Clean. The agent perceives its location and the location's
status. This serves as an example of how to implement a simple
Environment."""
def __init__(self):
super(TrivialVacuumEnvironment, self).__init__()
self.status = {loc_A: random.choice(['Clean', 'Dirty']),
loc_B: random.choice(['Clean', 'Dirty'])}
def thing_classes(self):
return [Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent,
TableDrivenVacuumAgent, ModelBasedVacuumAgent]
def percept(self, agent):
"Returns the agent's location, and the location status (Dirty/Clean)."
return (agent.location, self.status[agent.location])
def execute_action(self, agent, action):
"""Change agent's location and/or location's status; track performance.
Score 10 for each dirt cleaned; -1 for each move."""
if action == 'Right':
agent.location = loc_B
agent.performance -= 1
elif action == 'Left':
agent.location = loc_A
agent.performance -= 1
elif action == 'Suck':
if self.status[agent.location] == 'Dirty':
agent.performance += 10
self.status[agent.location] = 'Clean'
def default_location(self, thing):
"Agents start in either location at random."
return random.choice([loc_A, loc_B])
#______________________________________________________________________________
## The Wumpus World
class Gold(Thing): pass
class Pit(Thing): pass
class Arrow(Thing): pass
class Wumpus(Agent): pass
class Explorer(Agent): pass
class WumpusEnvironment(XYEnvironment):
def __init__(self, width=10, height=10):
super(WumpusEnvironment, self).__init__(width, height)
self.add_walls()
def thing_classes(self):
return [Wall, Gold, Pit, Arrow, Wumpus, Explorer]
## Needs a lot of work ...
#______________________________________________________________________________
def compare_agents(EnvFactory, AgentFactories, n=10, steps=1000):
"""See how well each of several agents do in n instances of an environment.
Pass in a factory (constructor) for environments, and several for agents.
Create n instances of the environment, and run each agent in copies of
each one for steps. Return a list of (agent, average-score) tuples."""
envs = [EnvFactory() for i in range(n)]
return [(A, test_agent(A, steps, copy.deepcopy(envs)))
for A in AgentFactories]
def test_agent(AgentFactory, steps, envs):
"Return the mean score of running an agent in each of the envs, for steps"
def score(env):
agent = AgentFactory()
env.add_thing(agent)
env.run(steps)
return agent.performance
return mean(map(score, envs))
#_________________________________________________________________________
__doc__ += """
>>> a = ReflexVacuumAgent()
>>> a.program((loc_A, 'Clean'))
'Right'
>>> a.program((loc_B, 'Clean'))
'Left'
>>> a.program((loc_A, 'Dirty'))
'Suck'
>>> a.program((loc_A, 'Dirty'))
'Suck'
>>> e = TrivialVacuumEnvironment()
>>> e.add_thing(ModelBasedVacuumAgent())
>>> e.run(5)
## Environments, and some agents, are randomized, so the best we can
## give is a range of expected scores. If this test fails, it does
## not necessarily mean something is wrong.
>>> envs = [TrivialVacuumEnvironment() for i in range(100)]
>>> def testv(A): return test_agent(A, 4, copy.deepcopy(envs))
>>> 7 < testv(ModelBasedVacuumAgent) < 11
True
>>> 5 < testv(ReflexVacuumAgent) < 9
True
>>> 2 < testv(TableDrivenVacuumAgent) < 6
True
>>> 0.5 < testv(RandomVacuumAgent) < 3
True
"""
#______________________________________________________________________________
# GUI - Graphical User Interface for Environments
# If you do not have tkinter installed, either get a new installation of Python
# (tkinter is standard in all new releases), or delete the rest of this file
# and muddle through without a GUI.
try:
import tkinter as tk
class EnvGUI(tk.Tk, object):
def __init__(self, env, title = 'AIMA GUI', cellwidth=50, n=10):
# Initialize window
super(EnvGUI, self).__init__()
self.title(title)
# Create components
canvas = EnvCanvas(self, env, cellwidth, n)
toolbar = EnvToolbar(self, env, canvas)
for w in [canvas, toolbar]:
w.pack(side="bottom", fill="x", padx="3", pady="3")
class EnvToolbar(tk.Frame, object):
def __init__(self, parent, env, canvas):
super(EnvToolbar, self).__init__(parent, relief='raised', bd=2)
# Initialize instance variables
self.env = env
self.canvas = canvas
self.running = False
self.speed = 1.0
# Create buttons and other controls
for txt, cmd in [('Step >', self.env.step),
('Run >>', self.run),
('Stop [ ]', self.stop),
('List things', self.list_things),
('List agents', self.list_agents)]:
tk.Button(self, text=txt, command=cmd).pack(side='left')
tk.Label(self, text='Speed').pack(side='left')
scale = tk.Scale(self, orient='h',
from_=(1.0), to=10.0, resolution=1.0,
command=self.set_speed)
scale.set(self.speed)
scale.pack(side='left')
def run(self):
print('run')
self.running = True
self.background_run()
def stop(self):
print('stop')
self.running = False
def background_run(self):
if self.running:
self.env.step()
# ms = int(1000 * max(float(self.speed), 0.5))
#ms = max(int(1000 * float(self.delay)), 1)
delay_sec = 1.0 / max(self.speed, 1.0) # avoid division by zero
ms = int(1000.0 * delay_sec) # seconds to milliseconds
self.after(ms, self.background_run)
def list_things(self):
print("Things in the environment:")
for thing in self.env.things:
print("%s at %s" % (thing, thing.location))
def list_agents(self):
print("Agents in the environment:")
for agt in self.env.agents:
print("%s at %s" % (agt, agt.location))
def set_speed(self, speed):
self.speed = float(speed)
except ImportError:
pass

434
logic/autograder.py Normal file
View File

@ -0,0 +1,434 @@
# autograder.py
# -------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
# imports from python standard library
from __future__ import print_function
import grading
import importlib.util
import optparse
import os
import re
import sys
import projectParams
import random
random.seed(0)
try:
from pacman import GameState
except:
pass
# register arguments and set default values
def readCommand(argv):
parser = optparse.OptionParser(description='Run public tests on student code')
parser.set_defaults(generateSolutions=False, edxOutput=False, gsOutput=False, muteOutput=False, printTestCase=False, noGraphics=False)
# BEGIN SOLUTION NO PROMPT
parser.set_defaults(generatePublicTests=False)
# END SOLUTION NO PROMPT
parser.add_option('--test-directory',
dest='testRoot',
default='test_cases',
help='Root test directory which contains subdirectories corresponding to each question')
parser.add_option('--student-code',
dest='studentCode',
default=projectParams.STUDENT_CODE_DEFAULT,
help='comma separated list of student code files')
parser.add_option('--code-directory',
dest='codeRoot',
default="",
help='Root directory containing the student and testClass code')
parser.add_option('--test-case-code',
dest='testCaseCode',
default=projectParams.PROJECT_TEST_CLASSES,
help='class containing testClass classes for this project')
parser.add_option('--generate-solutions',
dest='generateSolutions',
action='store_true',
help='Write solutions generated to .solution file')
parser.add_option('--edx-output',
dest='edxOutput',
action='store_true',
help='Generate edX output files')
parser.add_option('--gradescope-output',
dest='gsOutput',
action='store_true',
help='Generate GradeScope output files')
parser.add_option('--mute',
dest='muteOutput',
action='store_true',
help='Mute output from executing tests')
parser.add_option('--print-tests', '-p',
dest='printTestCase',
action='store_true',
help='Print each test case before running them.')
parser.add_option('--test', '-t',
dest='runTest',
default=None,
help='Run one particular test. Relative to test root.')
parser.add_option('--question', '-q',
dest='gradeQuestion',
default=None,
help='Grade one particular question.')
parser.add_option('--no-graphics',
dest='noGraphics',
action='store_true',
help='No graphics display for pacman games.')
# BEGIN SOLUTION NO PROMPT
parser.add_option('--generate-public-tests',
dest='generatePublicTests',
action='store_true',
help='Generate ./test_cases/* from ./private_test_cases/*')
# END SOLUTION NO PROMPT
(options, args) = parser.parse_args(argv)
return options
# confirm we should author solution files
def confirmGenerate():
print('WARNING: this action will overwrite any solution files.')
print('Are you sure you want to proceed? (yes/no)')
while True:
ans = sys.stdin.readline().strip()
if ans == 'yes':
break
elif ans == 'no':
sys.exit(0)
else:
print('please answer either "yes" or "no"')
# TODO: Fix this so that it tracebacks work correctly
# Looking at source of the traceback module, presuming it works
# the same as the intepreters, it uses co_filename. This is,
# however, a readonly attribute.
def setModuleName(module, filename):
functionType = type(confirmGenerate)
classType = type(optparse.Option)
for i in dir(module):
o = getattr(module, i)
if hasattr(o, '__file__'):
continue
if type(o) == functionType:
setattr(o, '__file__', filename)
elif type(o) == classType:
setattr(o, '__file__', filename)
# TODO: assign member __file__'s?
#print(i, type(o))
#from cStringIO import StringIO
# def loadModuleString(moduleSource):
# # Below broken, imp doesn't believe its being passed a file:
# # ValueError: load_module arg#2 should be a file or None
# #
# #f = StringIO(moduleCodeDict[k])
# #tmp = imp.load_module(k, f, k, (".py", "r", imp.PY_SOURCE))
# tmp = imp.new_module(k)
# exec(moduleCodeDict[k], tmp.__dict__)
# setModuleName(tmp, k)
# return tmp
import py_compile
def loadModuleFile(moduleName, filePath):
# https://docs.python.org/3/library/importlib.html#importing-a-source-file-directly
spec = importlib.util.spec_from_file_location(moduleName, filePath)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
def readFile(path, root=""):
"Read file from disk at specified path and return as string"
with open(os.path.join(root, path), 'r') as handle:
return handle.read()
#######################################################################
# Error Hint Map
#######################################################################
# TODO: use these
ERROR_HINT_MAP = {
'q1': {
"<type 'exceptions.IndexError'>": """
We noticed that your project threw an IndexError on q1.
While many things may cause this, it may have been from
assuming a certain number of successors from a state space
or assuming a certain number of actions available from a given
state. Try making your code more general (no hardcoded indices)
and submit again!
"""
},
'q3': {
"<type 'exceptions.AttributeError'>": """
We noticed that your project threw an AttributeError on q3.
While many things may cause this, it may have been from assuming
a certain size or structure to the state space. For example, if you have
a line of code assuming that the state is (x, y) and we run your code
on a state space with (x, y, z), this error could be thrown. Try
making your code more general and submit again!
"""
}
}
import pprint
def splitStrings(d):
d2 = dict(d)
for k in d:
if k[0:2] == "__":
del d2[k]
continue
if d2[k].find("\n") >= 0:
d2[k] = d2[k].split("\n")
return d2
def printTest(testDict, solutionDict):
pp = pprint.PrettyPrinter(indent=4)
print("Test case:")
for line in testDict["__raw_lines__"]:
print(" |", line)
print("Solution:")
for line in solutionDict["__raw_lines__"]:
print(" |", line)
def runTest(testName, moduleDict, printTestCase=False, display=None):
import testParser
import testClasses
for module in moduleDict:
setattr(sys.modules[__name__], module, moduleDict[module])
testDict = testParser.TestParser(testName + ".test").parse()
solutionDict = testParser.TestParser(testName + ".solution").parse()
test_out_file = os.path.join('%s.test_output' % testName)
testDict['test_out_file'] = test_out_file
testClass = getattr(projectTestClasses, testDict['class'])
questionClass = getattr(testClasses, 'Question')
question = questionClass({'max_points': 0}, display)
testCase = testClass(question, testDict)
if printTestCase:
printTest(testDict, solutionDict)
# This is a fragile hack to create a stub grades object
grades = grading.Grades(projectParams.PROJECT_NAME, [(None, 0)])
testCase.execute(grades, moduleDict, solutionDict)
# returns all the tests you need to run in order to run question
def getDepends(testParser, testRoot, question):
allDeps = [question]
questionDict = testParser.TestParser(os.path.join(testRoot, question, 'CONFIG')).parse()
if 'depends' in questionDict:
depends = questionDict['depends'].split()
for d in depends:
# run dependencies first
allDeps = getDepends(testParser, testRoot, d) + allDeps
return allDeps
# get list of questions to grade
def getTestSubdirs(testParser, testRoot, questionToGrade):
# THIS IS WHERE QUESTIONS ARE SPECIFIED
problemDict = testParser.TestParser(os.path.join(testRoot, 'CONFIG')).parse()
if questionToGrade != None:
questions = getDepends(testParser, testRoot, questionToGrade)
if len(questions) > 1:
print('Note: due to dependencies, the following tests will be run: %s' % ' '.join(questions))
return questions
if 'order' in problemDict:
return problemDict['order'].split()
return sorted(os.listdir(testRoot))
# evaluate student code
def evaluate(generateSolutions, testRoot, moduleDict, exceptionMap=ERROR_HINT_MAP,
edxOutput=False, muteOutput=False, gsOutput=False,
printTestCase=False, questionToGrade=None, display=None):
# imports of testbench code. note that the testClasses import must follow
# the import of student code due to dependencies
import testParser
import testClasses
for module in moduleDict:
setattr(sys.modules[__name__], module, moduleDict[module])
questions = []
questionDicts = {}
# HERE IS WHERE QUESTIONS ARE CREATED
test_subdirs = getTestSubdirs(testParser, testRoot, questionToGrade)
for q in test_subdirs:
subdir_path = os.path.join(testRoot, q)
if not os.path.isdir(subdir_path) or q[0] == '.':
continue
# create a question object
questionDict = testParser.TestParser(os.path.join(subdir_path, 'CONFIG')).parse()
questionClass = getattr(testClasses, questionDict['class'])
question = questionClass(questionDict, display)
questionDicts[q] = questionDict
# load test cases into question
tests = [t for t in os.listdir(
subdir_path) if re.match(r'[^#~.].*\.test\Z', t)]
tests = [re.match(r'(.*)\.test\Z', t).group(1) for t in tests]
for t in sorted(tests):
test_file = os.path.join(subdir_path, '%s.test' % t)
solution_file = os.path.join(subdir_path, '%s.solution' % t)
test_out_file = os.path.join(subdir_path, '%s.test_output' % t)
testDict = testParser.TestParser(test_file).parse()
if testDict.get("disabled", "false").lower() == "true":
continue
testDict['test_out_file'] = test_out_file
testClass = getattr(projectTestClasses, testDict['class'])
testCase = testClass(question, testDict)
def makefun(testCase, solution_file):
if generateSolutions:
# write solution file to disk
return lambda grades: testCase.writeSolution(moduleDict, solution_file)
else:
# read in solution dictionary and pass as an argument
testDict = testParser.TestParser(test_file).parse()
solutionDict = testParser.TestParser(solution_file).parse()
if printTestCase:
return lambda grades: printTest(testDict, solutionDict) or testCase.execute(grades, moduleDict, solutionDict)
else:
return lambda grades: testCase.execute(grades, moduleDict, solutionDict)
question.addTestCase(testCase, makefun(testCase, solution_file))
# Note extra function is necessary for scoping reasons
def makefun(question):
return lambda grades: question.execute(grades)
setattr(sys.modules[__name__], q, makefun(question))
questions.append((q, question.getMaxPoints()))
grades = grading.Grades(projectParams.PROJECT_NAME, questions,
gsOutput=gsOutput, edxOutput=edxOutput, muteOutput=muteOutput)
if questionToGrade == None:
for q in questionDicts:
for prereq in questionDicts[q].get('depends', '').split():
grades.addPrereq(q, prereq)
grades.grade(sys.modules[__name__], bonusPic=projectParams.BONUS_PIC)
return grades.points
def getDisplay(graphicsByDefault, options=None):
graphics = graphicsByDefault
if options is not None and options.noGraphics:
graphics = False
if graphics:
try:
import graphicsDisplay
return graphicsDisplay.PacmanGraphics(1, frameTime=.05)
except ImportError:
pass
import textDisplay
return textDisplay.NullGraphics()
# BEGIN SOLUTION NO PROMPT
import shutil
def copy(srcDir, destDir, filename):
srcFilename = os.path.join(srcDir, filename)
destFilename = os.path.join(destDir, filename)
print("Copying {} -> {}".format(srcFilename, destFilename))
shutil.copy(srcFilename, destFilename)
# with open(os.path.join(srcDir, filename), 'r') as f1:
# with open(os.path.join(destDir, filename), 'w') as f2:
# f2.write(f1.read())
def generatePublicTests(moduleDict, privateRoot='private_test_cases', publicRoot='test_cases'):
import testParser
import testClasses
for module in moduleDict:
setattr(sys.modules[__name__], module, moduleDict[module])
if not os.path.exists(publicRoot): os.mkdir(publicRoot)
copy(privateRoot, publicRoot, 'CONFIG')
for q in sorted(os.listdir(privateRoot)):
private_subdir_path = os.path.join(privateRoot, q)
public_subdir_path = os.path.join(publicRoot, q)
if not os.path.exists(public_subdir_path): os.mkdir(public_subdir_path)
if not os.path.isdir(private_subdir_path) or q[0] == '.':
continue
copy(private_subdir_path, public_subdir_path, 'CONFIG')
# create a question object
questionDict = testParser.TestParser(os.path.join(public_subdir_path, 'CONFIG')).parse()
questionClass = getattr(testClasses, questionDict['class'])
question = questionClass(questionDict, getDisplay(False))
tests = list(filter(lambda t: re.match(r'[^#~.].*\.test\Z', t), os.listdir(private_subdir_path)))
tests = list(map(lambda t: re.match(r'(.*)\.test\Z', t).group(1), tests))
for t in sorted(tests):
test_file = os.path.join(private_subdir_path, '%s.test' % t)
public_test_file = os.path.join(public_subdir_path, '%s.test' % t)
test_out_file = os.path.join(public_subdir_path, '%s.test_output' % t)
print("Creating public test case {} from {}".format(public_test_file, test_file))
testDict = testParser.TestParser(test_file).parse()
if testDict.get("disabled", "false").lower() == "true":
continue
testDict['test_out_file'] = test_out_file
testClass = getattr(projectTestClasses, testDict['class'])
testCase = testClass(question, testDict)
testCase.createPublicVersion()
testCase.emitPublicVersion(public_test_file)
# END SOLUTION NO PROMPT
if __name__ == '__main__':
options = readCommand(sys.argv)
if options.generateSolutions:
confirmGenerate()
codePaths = options.studentCode.split(',')
# moduleCodeDict = {}
# for cp in codePaths:
# moduleName = re.match(r'.*?([^/]*)\.py', cp).group(1)
# moduleCodeDict[moduleName] = readFile(cp, root=options.codeRoot)
# moduleCodeDict['projectTestClasses'] = readFile(options.testCaseCode, root=options.codeRoot)
# moduleDict = loadModuleDict(moduleCodeDict)
moduleDict = {}
for cp in codePaths:
moduleName = re.match(r'.*?([^/]*)\.py', cp).group(1)
moduleDict[moduleName] = loadModuleFile(moduleName, os.path.join(options.codeRoot, cp))
moduleName = re.match(r'.*?([^/]*)\.py', options.testCaseCode).group(1)
moduleDict['projectTestClasses'] = loadModuleFile(moduleName, os.path.join(options.codeRoot, options.testCaseCode))
# BEGIN SOLUTION NO PROMPT
if options.generatePublicTests:
generatePublicTests(moduleDict)
sys.exit()
# END SOLUTION NO PROMPT
if options.runTest != None:
runTest(options.runTest, moduleDict, printTestCase=options.printTestCase, display=getDisplay(True, options))
else:
evaluate(options.generateSolutions, options.testRoot, moduleDict,
gsOutput=options.gsOutput,
edxOutput=options.edxOutput, muteOutput=options.muteOutput, printTestCase=options.printTestCase,
questionToGrade=options.gradeQuestion, display=getDisplay(options.gradeQuestion != None, options))

42
logic/doctests.py Normal file
View File

@ -0,0 +1,42 @@
# doctests.py
# -----------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""Run all doctests from modules on the command line. Use -v for verbose.
Example usages:
python doctests.py *.py
python doctests.py -v *.py
You can add more module-level tests with
__doc__ += "..."
You can add stochastic tests with
__doc__ += random_tests("...")
"""
if __name__ == "__main__":
import sys, glob, doctest
args = [arg for arg in sys.argv[1:] if arg != '-v']
if not args: args = ['*.py']
modules = [__import__(name.replace('.py',''))
for arg in args for name in glob.glob(arg)]
print("Testing %d modules..." % len(modules))
for module in modules:
doctest.testmod(module, report=1, optionflags=doctest.REPORT_UDIFF)
summary = doctest.master.summarize() if modules else (0, 0)
print()
print()
print('%d failed out of %d tests' % summary)

791
logic/game.py Normal file
View File

@ -0,0 +1,791 @@
# game.py
# -------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from util import *
import time
import os
import traceback
import sys
#######################
# Parts worth reading #
#######################
class Agent:
"""
An agent must define a getAction method, but may also define the
following methods which will be called if they exist:
def registerInitialState(self, state): # inspects the starting state
"""
def __init__(self, index=0):
self.index = index
self.live_checking = False
def getAction(self, state):
"""
The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and
must return an action from Directions.{North, South, East, West, Stop}
"""
raiseNotDefined()
class Directions:
NORTH = 'North'
SOUTH = 'South'
EAST = 'East'
WEST = 'West'
STOP = 'Stop'
LEFT = {NORTH: WEST,
SOUTH: EAST,
EAST: NORTH,
WEST: SOUTH,
STOP: STOP}
RIGHT = dict([(y, x) for x, y in list(LEFT.items())])
REVERSE = {NORTH: SOUTH,
SOUTH: NORTH,
EAST: WEST,
WEST: EAST,
STOP: STOP}
class Configuration:
"""
A Configuration holds the (x,y) coordinate of a character, along with its
traveling direction.
The convention for positions, like a graph, is that (0,0) is the lower left corner, x increases
horizontally and y increases vertically. Therefore, north is the direction of increasing y, or (0,1).
"""
def __init__(self, pos, direction):
self.pos = pos
self.direction = direction
def getPosition(self):
return (self.pos)
def getDirection(self):
return self.direction
def isInteger(self):
x, y = self.pos
return x == int(x) and y == int(y)
def __eq__(self, other):
if other == None:
return False
return (self.pos == other.pos and self.direction == other.direction)
def __hash__(self):
x = hash(self.pos)
y = hash(self.direction)
return hash(x + 13 * y)
def __str__(self):
return "(x,y)="+str(self.pos)+", "+str(self.direction)
def generateSuccessor(self, vector):
"""
Generates a new configuration reached by translating the current
configuration by the action vector. This is a low-level call and does
not attempt to respect the legality of the movement.
Actions are movement vectors.
"""
x, y = self.pos
dx, dy = vector
direction = Actions.vectorToDirection(vector)
if direction == Directions.STOP:
direction = self.direction # There is no stop direction
return Configuration((x + dx, y+dy), direction)
class AgentState:
"""
AgentStates hold the state of an agent (configuration, speed, scared, etc).
"""
def __init__(self, startConfiguration, isPacman):
self.start = startConfiguration
self.configuration = startConfiguration
self.isPacman = isPacman
self.scaredTimer = 0
# state below potentially used for contest only
self.numCarrying = 0
self.numReturned = 0
def __str__(self):
if self.isPacman:
return "Pacman: " + str(self.configuration)
else:
return "Ghost: " + str(self.configuration)
def __eq__(self, other):
if other == None:
return False
return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer
def __hash__(self):
return hash(hash(self.configuration) + 13 * hash(self.scaredTimer))
def copy(self):
state = AgentState(self.start, self.isPacman)
state.configuration = self.configuration
state.scaredTimer = self.scaredTimer
state.numCarrying = self.numCarrying
state.numReturned = self.numReturned
return state
def getPosition(self):
if self.configuration == None:
return None
return self.configuration.getPosition()
def getDirection(self):
return self.configuration.getDirection()
class Grid:
"""
A 2-dimensional array of objects backed by a list of lists. Data is accessed
via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal,
y vertical and the origin (0,0) in the bottom left corner.
The __str__ method constructs an output that is oriented like a pacman board.
"""
def __init__(self, width, height, initialValue=False, bitRepresentation=None):
if initialValue not in [False, True]:
raise Exception('Grids can only contain booleans')
self.CELLS_PER_INT = 30
self.width = width
self.height = height
self.data = [[initialValue for y in range(height)] for x in range(width)]
if bitRepresentation:
self._unpackBits(bitRepresentation)
def __getitem__(self, i):
return self.data[i]
def __setitem__(self, key, item):
self.data[key] = item
def __str__(self):
out = [[str(self.data[x][y])[0] for x in range(self.width)] for y in range(self.height)]
out.reverse()
return '\n'.join([''.join(x) for x in out])
def __eq__(self, other):
if other == None:
return False
return self.data == other.data
def __hash__(self):
# return hash(str(self))
base = 1
h = 0
for l in self.data:
for i in l:
if i:
h += base
base *= 2
return hash(h)
def copy(self):
g = Grid(self.width, self.height)
g.data = [x[:] for x in self.data]
return g
def deepCopy(self):
return self.copy()
def shallowCopy(self):
g = Grid(self.width, self.height)
g.data = self.data
return g
def count(self, item=True):
return sum([x.count(item) for x in self.data])
def asList(self, key=True):
list = []
for x in range(self.width):
for y in range(self.height):
if self[x][y] == key:
list.append((x, y))
return list
def makeOuterWalls(self):
for x in range(self.width):
for y in range(self.height):
self.data[x][y] = self.data[x][y] or (
(x == 0 or x == self.width - 1)
or (y == 0 or y == self.height - 1)
)
def outer_wall_coords(self):
outer_wall_coords_list = []
for x in range(self.width):
for y in range(self.height):
if ((x == 0 or x == self.width - 1)
or (y == 0 or y == self.height - 1)):
outer_wall_coords_list.append((x, y))
return outer_wall_coords_list
def packBits(self):
"""
Returns an efficient int list representation
(width, height, bitPackedInts...)
"""
bits = [self.width, self.height]
currentInt = 0
for i in range(self.height * self.width):
bit = self.CELLS_PER_INT - (i % self.CELLS_PER_INT) - 1
x, y = self._cellIndexToPosition(i)
if self[x][y]:
currentInt += 2 ** bit
if (i + 1) % self.CELLS_PER_INT == 0:
bits.append(currentInt)
currentInt = 0
bits.append(currentInt)
return tuple(bits)
def _cellIndexToPosition(self, index):
x = index // self.height
y = index % self.height
return x, y
def _unpackBits(self, bits):
"""
Fills in data from a bit-level representation
"""
cell = 0
for packed in bits:
for bit in self._unpackInt(packed, self.CELLS_PER_INT):
if cell == self.width * self.height:
break
x, y = self._cellIndexToPosition(cell)
self[x][y] = bit
cell += 1
def _unpackInt(self, packed, size):
bools = []
if packed < 0:
raise ValueError("must be a positive integer")
for i in range(size):
n = 2 ** (self.CELLS_PER_INT - i - 1)
if packed >= n:
bools.append(True)
packed -= n
else:
bools.append(False)
return bools
def reconstituteGrid(bitRep):
if type(bitRep) is not type((1, 2)):
return bitRep
width, height = bitRep[:2]
return Grid(width, height, bitRepresentation=bitRep[2:])
####################################
# Parts you shouldn't have to read #
####################################
class Actions:
"""
A collection of static methods for manipulating move actions.
"""
# Directions
_directions = {Directions.NORTH: (0, 1),
Directions.SOUTH: (0, -1),
Directions.EAST: (1, 0),
Directions.WEST: (-1, 0),
Directions.STOP: (0, 0)}
_directionsAsList = _directions.items()
TOLERANCE = .001
def reverseDirection(action):
if action == Directions.NORTH:
return Directions.SOUTH
if action == Directions.SOUTH:
return Directions.NORTH
if action == Directions.EAST:
return Directions.WEST
if action == Directions.WEST:
return Directions.EAST
return action
reverseDirection = staticmethod(reverseDirection)
def vectorToDirection(vector):
dx, dy = vector
if dy > 0:
return Directions.NORTH
if dy < 0:
return Directions.SOUTH
if dx < 0:
return Directions.WEST
if dx > 0:
return Directions.EAST
return Directions.STOP
vectorToDirection = staticmethod(vectorToDirection)
def directionToVector(direction, speed=1.0):
dx, dy = Actions._directions[direction]
return (dx * speed, dy * speed)
directionToVector = staticmethod(directionToVector)
def getPossibleActions(config, walls):
possible = []
x, y = config.pos
x_int, y_int = int(x + 0.5), int(y + 0.5)
# In between grid points, all agents must continue straight
if (abs(x - x_int) + abs(y - y_int) > Actions.TOLERANCE):
return [config.getDirection()]
for dir, vec in Actions._directionsAsList:
dx, dy = vec
next_y = y_int + dy
next_x = x_int + dx
if not walls[next_x][next_y]:
possible.append(dir)
return possible
getPossibleActions = staticmethod(getPossibleActions)
def getLegalNeighbors(position, walls):
x, y = position
x_int, y_int = int(x + 0.5), int(y + 0.5)
neighbors = []
for dir, vec in Actions._directionsAsList:
dx, dy = vec
next_x = x_int + dx
if next_x < 0 or next_x == walls.width:
continue
next_y = y_int + dy
if next_y < 0 or next_y == walls.height:
continue
if not walls[next_x][next_y]:
neighbors.append((next_x, next_y))
return neighbors
getLegalNeighbors = staticmethod(getLegalNeighbors)
def getSuccessor(position, action):
dx, dy = Actions.directionToVector(action)
x, y = position
return (x + dx, y + dy)
getSuccessor = staticmethod(getSuccessor)
class GameStateData:
def __init__(self, prevState=None):
"""
Generates a new data packet by copying information from its predecessor.
"""
if prevState != None:
self.food = prevState.food.shallowCopy()
self.capsules = prevState.capsules[:]
self.agentStates = self.copyAgentStates(prevState.agentStates)
self.layout = prevState.layout
self._eaten = prevState._eaten
self.score = prevState.score
self._foodEaten = None
self._foodAdded = None
self._capsuleEaten = None
self._agentMoved = None
self._lose = False
self._win = False
self.scoreChange = 0
def deepCopy(self):
state = GameStateData(self)
state.food = self.food.deepCopy()
state.layout = self.layout.deepCopy()
state._agentMoved = self._agentMoved
state._foodEaten = self._foodEaten
state._foodAdded = self._foodAdded
state._capsuleEaten = self._capsuleEaten
return state
def copyAgentStates(self, agentStates):
copiedStates = []
for agentState in agentStates:
copiedStates.append(agentState.copy())
return copiedStates
def __eq__(self, other):
"""
Allows two states to be compared.
"""
if other == None:
return False
# TODO Check for type of other
if not self.agentStates == other.agentStates:
return False
if not self.food == other.food:
return False
if not self.capsules == other.capsules:
return False
if not self.score == other.score:
return False
return True
def __hash__(self):
"""
Allows states to be keys of dictionaries.
"""
for i, state in enumerate(self.agentStates):
try:
int(hash(state))
except TypeError as e:
print(e)
# hash(state)
return int((hash(tuple(self.agentStates)) + 13*hash(self.food) + 113 * hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575)
def __str__(self):
width, height = self.layout.width, self.layout.height
map = Grid(width, height)
if type(self.food) == type((1, 2)):
self.food = reconstituteGrid(self.food)
for x in range(width):
for y in range(height):
food, walls = self.food, self.layout.walls
map[x][y] = self._foodWallStr(food[x][y], walls[x][y])
for agentState in self.agentStates:
if agentState == None:
continue
if agentState.configuration == None:
continue
x, y = [int(i) for i in nearestPoint(agentState.configuration.pos)]
agent_dir = agentState.configuration.direction
if agentState.isPacman:
map[x][y] = self._pacStr(agent_dir)
else:
map[x][y] = self._ghostStr(agent_dir)
for x, y in self.capsules:
map[x][y] = 'o'
return str(map) + ("\nScore: %d\n" % self.score)
def _foodWallStr(self, hasFood, hasWall):
if hasFood:
return '.'
elif hasWall:
return '%'
else:
return ' '
def _pacStr(self, dir):
if dir == Directions.NORTH:
return 'v'
if dir == Directions.SOUTH:
return '^'
if dir == Directions.WEST:
return '>'
return '<'
def _ghostStr(self, dir):
return 'G'
if dir == Directions.NORTH:
return 'M'
if dir == Directions.SOUTH:
return 'W'
if dir == Directions.WEST:
return '3'
return 'E'
def initialize(self, layout, numGhostAgents):
"""
Creates an initial game state from a layout array (see layout.py).
"""
self.food = layout.food.copy()
#self.capsules = []
self.capsules = layout.capsules[:]
self.layout = layout
self.score = 0
self.scoreChange = 0
self.agentStates = []
numGhosts = 0
## Randomize which ghosts appear
#agentPositions = layout.agentPositions
#random.shuffle(agentPositions)
for isPacman, pos in layout.agentPositions:
if not isPacman:
if numGhosts == numGhostAgents:
continue # Max ghosts reached already
else:
numGhosts += 1
self.agentStates.append(AgentState(
Configuration(pos, Directions.STOP), isPacman))
self._eaten = [False for a in self.agentStates]
try:
import boinc
_BOINC_ENABLED = True
except:
_BOINC_ENABLED = False
class Game:
"""
The Game manages the control flow, soliciting actions from agents.
"""
def __init__(self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False):
self.agentCrashed = False
self.agents = agents
self.display = display
self.rules = rules
self.startingIndex = startingIndex
self.gameOver = False
self.muteAgents = muteAgents
self.catchExceptions = catchExceptions
self.moveHistory = []
self.totalAgentTimes = [0 for agent in agents]
self.totalAgentTimeWarnings = [0 for agent in agents]
self.agentTimeout = False
import io
self.agentOutput = [io.StringIO() for agent in agents]
def getProgress(self):
if self.gameOver:
return 1.0
else:
return self.rules.getProgress(self)
def _agentCrash(self, agentIndex, quiet=False):
"Helper method for handling agent crashes"
if not quiet:
traceback.print_exc()
self.gameOver = True
self.agentCrashed = True
self.rules.agentCrash(self, agentIndex)
OLD_STDOUT = None
OLD_STDERR = None
def mute(self, agentIndex):
if not self.muteAgents:
return
global OLD_STDOUT, OLD_STDERR
import io
OLD_STDOUT = sys.stdout
OLD_STDERR = sys.stderr
sys.stdout = self.agentOutput[agentIndex]
sys.stderr = self.agentOutput[agentIndex]
def unmute(self):
if not self.muteAgents:
return
global OLD_STDOUT, OLD_STDERR
# Revert stdout/stderr to originals
sys.stdout = OLD_STDOUT
sys.stderr = OLD_STDERR
def run(self):
"""
Main control loop for game play.
"""
self.display.initialize(self.state.data)
self.numMoves = 0
# self.display.initialize(self.state.makeObservation(1).data)
# inform learning agents of the game start
for i in range(len(self.agents)):
agent = self.agents[i]
if not agent:
self.mute(i)
# this is a null agent, meaning it failed to load
# the other team wins
print("Agent %d failed to load" % i, file=sys.stderr)
self.unmute()
self._agentCrash(i, quiet=True)
return
if ("registerInitialState" in dir(agent)):
self.mute(i)
if self.catchExceptions:
try:
timed_func = TimeoutFunction(agent.registerInitialState, int(self.rules.getMaxStartupTime(i)))
try:
start_time = time.time()
timed_func(self.state.deepCopy())
time_taken = time.time() - start_time
self.totalAgentTimes[i] += time_taken
except TimeoutFunctionException:
print("Agent %d ran out of time on startup!" % i, file=sys.stderr)
self.unmute()
self.agentTimeout = True
self._agentCrash(i, quiet=True)
return
except Exception as data:
self._agentCrash(i, quiet=False)
self.unmute()
return
else:
agent.registerInitialState(self.state.deepCopy())
# TODO: could this exceed the total time
self.unmute()
agentIndex = self.startingIndex
numAgents = len(self.agents)
while not self.gameOver:
# Fetch the next agent
agent = self.agents[agentIndex]
move_time = 0
skip_action = False
# Generate an observation of the state
if 'observationFunction' in dir(agent):
self.mute(agentIndex)
if self.catchExceptions:
try:
timed_func = TimeoutFunction(agent.observationFunction, int(self.rules.getMoveTimeout(agentIndex)))
try:
start_time = time.time()
observation = timed_func(self.state.deepCopy())
except TimeoutFunctionException:
skip_action = True
move_time += time.time() - start_time
self.unmute()
except Exception as data:
self._agentCrash(agentIndex, quiet=False)
self.unmute()
return
else:
observation = agent.observationFunction(self.state.deepCopy())
self.unmute()
else:
observation = self.state.deepCopy()
# Solicit an action
action = None
self.mute(agentIndex)
if self.catchExceptions:
try:
#timed_func = TimeoutFunction(agent.getAction, int(self.rules.getMoveTimeout(agentIndex)) - int(move_time))
timed_func = TimeoutFunction(agent.getAction, 1800)
try:
start_time = time.time()
if skip_action:
raise TimeoutFunctionException()
action = timed_func(observation)
if agent.live_checking:
yield action[1]
action = action[0]
except TimeoutFunctionException:
print("Agent %d timed out on a single move!" % agentIndex, file=sys.stderr)
self.agentTimeout = True
self._agentCrash(agentIndex, quiet=True)
self.unmute()
return
move_time += time.time() - start_time
if move_time > self.rules.getMoveWarningTime(agentIndex):
self.totalAgentTimeWarnings[agentIndex] += 1
print("Agent %d took too long to make a move! This is warning %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr)
if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex):
print("Agent %d exceeded the maximum number of warnings: %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr)
self.agentTimeout = True
self._agentCrash(agentIndex, quiet=True)
self.unmute()
return
self.totalAgentTimes[agentIndex] += move_time
#print("Agent: %d, time: %f, total: %f" % (agentIndex, move_time, self.totalAgentTimes[agentIndex]))
if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex):
print("Agent %d ran out of time! (time: %1.2f)" % (agentIndex, self.totalAgentTimes[agentIndex]), file=sys.stderr)
self.agentTimeout = True
self._agentCrash(agentIndex, quiet=True)
self.unmute()
return
self.unmute()
except Exception as data:
self._agentCrash(agentIndex)
self.unmute()
return
else:
action = agent.getAction(observation)
# Hack for layouts without food
if action == "EndGame":
print("Ending game")
break
self.unmute()
# Execute the action
self.moveHistory.append((agentIndex, action))
if self.catchExceptions:
try:
self.state = self.state.generateSuccessor( agentIndex, action )
except Exception as data:
self.mute(agentIndex)
self._agentCrash(agentIndex)
self.unmute()
return
else:
self.state = self.state.generateSuccessor(agentIndex, action)
# Change the display
self.display.update(self.state.data)
###idx = agentIndex - agentIndex % 2 + 1
###self.display.update( self.state.makeObservation(idx).data )
# Allow for game specific conditions (winning, losing, etc.)
self.rules.process(self.state, self)
# Track progress
if agentIndex == numAgents + 1:
self.numMoves += 1
# Next agent
agentIndex = (agentIndex + 1) % numAgents
if _BOINC_ENABLED:
boinc.set_fraction_done(self.getProgress())
# inform a learning agent of the game result
for agentIndex, agent in enumerate(self.agents):
if "final" in dir(agent):
try:
self.mute(agentIndex)
agent.final(self.state)
self.unmute()
except Exception as data:
if not self.catchExceptions:
raise
self._agentCrash(agentIndex)
self.unmute()
return
self.display.finish()
yield

90
logic/ghostAgents.py Normal file
View File

@ -0,0 +1,90 @@
# ghostAgents.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from game import Agent
from game import Actions
from game import Directions
import random
from util import manhattanDistance
import util
class GhostAgent(Agent):
def __init__(self, index):
self.index = index
def getAction(self, state):
dist = self.getDistribution(state)
if len(dist) == 0:
return Directions.STOP
else:
return util.chooseFromDistribution(dist)
def getDistribution(self, state):
"Returns a Counter encoding a distribution over actions from the provided state."
util.raiseNotDefined()
class RandomGhost(GhostAgent):
"A ghost that chooses a legal action uniformly at random."
def getDistribution(self, state):
dist = util.Counter()
for a in state.getLegalActions(self.index):
dist[a] = 1.0
dist.normalize()
return dist
class DirectionalGhost(GhostAgent):
"A ghost that prefers to rush Pacman, or flee when scared."
def __init__(self, index, prob_attack=0.8, prob_scaredFlee=0.8):
self.index = index
self.prob_attack = prob_attack
self.prob_scaredFlee = prob_scaredFlee
def getDistribution(self, state):
# Read variables from state
ghostState = state.getGhostState(self.index)
legalActions = state.getLegalActions(self.index)
pos = state.getGhostPosition(self.index)
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared:
speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [(pos[0]+a[0], pos[1]+a[1]) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max(distancesToPacman)
bestProb = self.prob_scaredFlee
else:
bestScore = min(distancesToPacman)
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions:
dist[a] = bestProb / len(bestActions)
for a in legalActions:
dist[a] += (1-bestProb) / len(legalActions)
dist.normalize()
return dist

323
logic/grading.py Normal file
View File

@ -0,0 +1,323 @@
# grading.py
# ----------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"Common code for autograders"
from __future__ import print_function
import html
import time
import sys
import json
import traceback
import pdb
from collections import defaultdict
import util
class Grades:
"A data structure for project grades, along with formatting code to display them"
def __init__(self, projectName, questionsAndMaxesList,
gsOutput=False, edxOutput=False, muteOutput=False):
"""
Defines the grading scheme for a project
projectName: project name
questionsAndMaxesDict: a list of (question name, max points per question)
"""
self.questions = [el[0] for el in questionsAndMaxesList]
self.maxes = dict(questionsAndMaxesList)
self.points = Counter()
self.messages = dict([(q, []) for q in self.questions])
self.project = projectName
self.start = time.localtime()[1:6]
self.sane = True # Sanity checks
self.currentQuestion = None # Which question we're grading
self.edxOutput = edxOutput
self.gsOutput = gsOutput # GradeScope output
self.mute = muteOutput
self.prereqs = defaultdict(set)
# print 'Autograder transcript for %s' % self.project
print('Starting on %d-%d at %d:%02d:%02d' % self.start)
def addPrereq(self, question, prereq):
self.prereqs[question].add(prereq)
def grade(self, gradingModule, exceptionMap={}, bonusPic=False):
"""
Grades each question
gradingModule: the module with all the grading functions (pass in with sys.modules[__name__])
"""
completedQuestions = set([])
for q in self.questions:
print('\nQuestion %s' % q)
print('=' * (9 + len(q)))
print()
self.currentQuestion = q
incompleted = self.prereqs[q].difference(completedQuestions)
if len(incompleted) > 0:
prereq = incompleted.pop()
print( \
"""*** NOTE: Make sure to complete Question %s before working on Question %s,
*** because Question %s builds upon your answer for Question %s.
""" % (prereq, q, q, prereq))
continue
if self.mute: util.mutePrint()
try:
util.TimeoutFunction(getattr(gradingModule, q), 1800)(self) # Call the question's function
# TimeoutFunction(getattr(gradingModule, q),1200)(self) # Call the question's function
except Exception as inst: # originally, Exception, inst
self.addExceptionMessage(q, inst, traceback)
self.addErrorHints(exceptionMap, inst, q[1])
except:
self.fail('FAIL: Terminated with a string exception.')
finally:
if self.mute: util.unmutePrint()
if self.points[q] >= self.maxes[q]:
completedQuestions.add(q)
print('\n### Question %s: %d/%d ###\n' % (q, self.points[q], self.maxes[q]))
print('\nFinished at %d:%02d:%02d' % time.localtime()[3:6])
print("\nProvisional grades\n==================")
for q in self.questions:
print('Question %s: %d/%d' % (q, self.points[q], self.maxes[q]))
print('------------------')
print('Total: %d/%d' % (self.points.totalCount(), sum(self.maxes.values())))
if bonusPic and self.points.totalCount() == 25:
print("""
ALL HAIL GRANDPAC.
LONG LIVE THE GHOSTBUSTING KING.
--- ---- ---
| \ / + \ / |
| + \--/ \--/ + |
| + + |
| + + + |
@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
\ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
V \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@
V @@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@
/\ @@@@@@@@@@@@@@@@@@@@@@
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@
/\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
/ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@
""")
print("""
Your grades are NOT yet registered. To register your grades, make sure
to follow your instructor's guidelines to receive credit on your project.
""")
if self.edxOutput:
self.produceOutput()
if self.gsOutput:
self.produceGradeScopeOutput()
def addExceptionMessage(self, q, inst, traceback):
"""
Method to format the exception message, this is more complicated because
we need to html.escape the traceback but wrap the exception in a <pre> tag
"""
self.fail('FAIL: Exception raised: %s' % inst)
self.addMessage('')
for line in traceback.format_exc().split('\n'):
self.addMessage(line)
def addErrorHints(self, exceptionMap, errorInstance, questionNum):
typeOf = str(type(errorInstance))
questionName = 'q' + questionNum
errorHint = ''
# question specific error hints
if exceptionMap.get(questionName):
questionMap = exceptionMap.get(questionName)
if (questionMap.get(typeOf)):
errorHint = questionMap.get(typeOf)
# fall back to general error messages if a question specific
# one does not exist
if (exceptionMap.get(typeOf)):
errorHint = exceptionMap.get(typeOf)
# dont include the HTML if we have no error hint
if not errorHint:
return ''
for line in errorHint.split('\n'):
self.addMessage(line)
def produceGradeScopeOutput(self):
out_dct = {}
# total of entire submission
total_possible = sum(self.maxes.values())
total_score = sum(self.points.values())
out_dct['score'] = total_score
out_dct['max_score'] = total_possible
out_dct['output'] = "Total score (%d / %d)" % (total_score, total_possible)
# individual tests
tests_out = []
for name in self.questions:
test_out = {}
# test name
test_out['name'] = name
# test score
test_out['score'] = self.points[name]
test_out['max_score'] = self.maxes[name]
# others
is_correct = self.points[name] >= self.maxes[name]
test_out['output'] = " Question {num} ({points}/{max}) {correct}".format(
num=(name[1] if len(name) == 2 else name),
points=test_out['score'],
max=test_out['max_score'],
correct=('X' if not is_correct else ''),
)
test_out['tags'] = []
tests_out.append(test_out)
out_dct['tests'] = tests_out
# file output
with open('gradescope_response.json', 'w') as outfile:
json.dump(out_dct, outfile)
return
def produceOutput(self):
edxOutput = open('edx_response.html', 'w')
edxOutput.write("<div>")
# first sum
total_possible = sum(self.maxes.values())
total_score = sum(self.points.values())
checkOrX = '<span class="incorrect"/>'
if (total_score >= total_possible):
checkOrX = '<span class="correct"/>'
header = """
<h3>
Total score ({total_score} / {total_possible})
</h3>
""".format(total_score=total_score,
total_possible=total_possible,
checkOrX=checkOrX
)
edxOutput.write(header)
for q in self.questions:
if len(q) == 2:
name = q[1]
else:
name = q
checkOrX = '<span class="incorrect"/>'
if (self.points[q] >= self.maxes[q]):
checkOrX = '<span class="correct"/>'
# messages = '\n<br/>\n'.join(self.messages[q])
messages = "<pre>%s</pre>" % '\n'.join(self.messages[q])
output = """
<div class="test">
<section>
<div class="shortform">
Question {q} ({points}/{max}) {checkOrX}
</div>
<div class="longform">
{messages}
</div>
</section>
</div>
""".format(q=name,
max=self.maxes[q],
messages=messages,
checkOrX=checkOrX,
points=self.points[q]
)
# print "*** output for Question %s " % q[1]
# print output
edxOutput.write(output)
edxOutput.write("</div>")
edxOutput.close()
edxOutput = open('edx_grade', 'w')
edxOutput.write(str(self.points.totalCount()))
edxOutput.close()
def fail(self, message, raw=False):
"Sets sanity check bit to false and outputs a message"
self.sane = False
self.assignZeroCredit()
self.addMessage(message, raw)
def assignZeroCredit(self):
self.points[self.currentQuestion] = 0
def addPoints(self, amt):
self.points[self.currentQuestion] += amt
def deductPoints(self, amt):
self.points[self.currentQuestion] -= amt
def assignFullCredit(self, message="", raw=False):
self.points[self.currentQuestion] = self.maxes[self.currentQuestion]
if message != "":
self.addMessage(message, raw)
def addMessage(self, message, raw=False):
if not raw:
# We assume raw messages, formatted for HTML, are printed separately
if self.mute: util.unmutePrint()
print('*** ' + message)
if self.mute: util.mutePrint()
message = html.escape(message)
self.messages[self.currentQuestion].append(message)
def addMessageToEmail(self, message):
print("WARNING**** addMessageToEmail is deprecated %s" % message)
for line in message.split('\n'):
pass
# print '%%% ' + line + ' %%%'
# self.messages[self.currentQuestion].append(line)
class Counter(dict):
"""
Dict with default 0
"""
def __getitem__(self, idx):
try:
return dict.__getitem__(self, idx)
except KeyError:
return 0
def totalCount(self):
"""
Returns the sum of counts for all keys.
"""
return sum(self.values())

792
logic/graphicsDisplay.py Normal file
View File

@ -0,0 +1,792 @@
# graphicsDisplay.py
# ------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from graphicsUtils import *
import math
import time
from game import Directions
###########################
# GRAPHICS DISPLAY CODE #
###########################
# Most code by Dan Klein and John Denero written or rewritten for cs188, UC Berkeley.
# Some code from a Pacman implementation by LiveWires, and used / modified with permission.
DEFAULT_GRID_SIZE = 30.0
INFO_PANE_HEIGHT = 35
BACKGROUND_COLOR = formatColor(0, 0, 0)
WALL_COLOR = formatColor(0.0/255.0, 51.0/255.0, 255.0/255.0)
INFO_PANE_COLOR = formatColor(.4, .4, 0)
SCORE_COLOR = formatColor(.9, .9, .9)
PACMAN_OUTLINE_WIDTH = 2
PACMAN_CAPTURE_OUTLINE_WIDTH = 4
GHOST_COLORS = []
GHOST_COLORS.append(formatColor(.9, 0, 0)) # Red
GHOST_COLORS.append(formatColor(0, .3, .9)) # Blue
GHOST_COLORS.append(formatColor(.98, .41, .07)) # Orange
GHOST_COLORS.append(formatColor(.1, .75, .7)) # Green
GHOST_COLORS.append(formatColor(1.0, 0.6, 0.0)) # Yellow
GHOST_COLORS.append(formatColor(.4, 0.13, 0.91)) # Purple
TEAM_COLORS = GHOST_COLORS[:2]
GHOST_SHAPE = [
(0, 0.3),
(0.25, 0.75),
(0.5, 0.3),
(0.75, 0.75),
(0.75, -0.5),
(0.5, -0.75),
(-0.5, -0.75),
(-0.75, -0.5),
(-0.75, 0.75),
(-0.5, 0.3),
(-0.25, 0.75)
]
GHOST_SIZE = 0.65
SCARED_COLOR = formatColor(1, 1, 1)
GHOST_VEC_COLORS = [colorToVector(c) for c in GHOST_COLORS]
PACMAN_COLOR = formatColor(255.0/255.0, 255.0/255.0, 61.0/255)
PALE_PACMAN_COLOR = formatColor(255.0/255.0, 255.0/255.0, 255.0/255)
PACMAN_SCALE = 0.5
#pacman_speed = 0.25
# Food
FOOD_COLOR = formatColor(1, 1, 1)
FOOD_SIZE = 0.1
# Laser
LASER_COLOR = formatColor(1, 0, 0)
LASER_SIZE = 0.02
# Capsule graphics
CAPSULE_COLOR = formatColor(1, 1, 1)
CAPSULE_SIZE = 0.25
# Drawing walls
WALL_RADIUS = 0.15
class InfoPane:
def __init__(self, layout, gridSize):
self.gridSize = gridSize
self.width = (layout.width) * gridSize
self.base = (layout.height + 1) * gridSize
self.height = INFO_PANE_HEIGHT
self.fontSize = 24
self.textColor = PACMAN_COLOR
self.drawPane()
def toScreen(self, pos, y=None):
"""
Translates a point relative from the bottom left of the info pane.
"""
if y == None:
x, y = pos
else:
x = pos
x = self.gridSize + x # Margin
y = self.base + y
return x, y
def drawPane(self):
self.scoreText = text(self.toScreen(0, 0), self.textColor, "SCORE: 0", "Times", self.fontSize, "bold")
def initializeGhostDistances(self, distances):
self.ghostDistanceText = []
size = 20
if self.width < 240:
size = 12
if self.width < 160:
size = 10
for i, d in enumerate(distances):
t = text(self.toScreen(self.width//2 + self.width//8 * i, 0), GHOST_COLORS[i+1], d, "Times", size, "bold")
self.ghostDistanceText.append(t)
def updateScore(self, score):
changeText(self.scoreText, "SCORE: % 4d" % score)
def setTeam(self, isBlue):
text = "RED TEAM"
if isBlue:
text = "BLUE TEAM"
self.teamText = text(self.toScreen(300, 0), self.textColor, text, "Times", self.fontSize, "bold")
def updateGhostDistances(self, distances):
if len(distances) == 0:
return
if 'ghostDistanceText' not in dir(self):
self.initializeGhostDistances(distances)
else:
for i, d in enumerate(distances):
changeText(self.ghostDistanceText[i], d)
def drawGhost(self):
pass
def drawPacman(self):
pass
def drawWarning(self):
pass
def clearIcon(self):
pass
def updateMessage(self, message):
pass
def clearMessage(self):
pass
class PacmanGraphics:
def __init__(self, zoom=1.0, frameTime=0.0, capture=False, render_walls_beforehand=True):
self.have_window = 0
self.currentGhostImages = {}
self.pacmanImage = None
self.zoom = zoom
self.gridSize = DEFAULT_GRID_SIZE * zoom
self.capture = capture
self.frameTime = frameTime
self.render_walls_beforehand = render_walls_beforehand
def checkNullDisplay(self):
return False
def initialize(self, state, isBlue=False):
self.isBlue = isBlue
self.startGraphics(state)
# self.drawDistributions(state)
self.distributionImages = None # Initialized lazily
self.drawStaticObjects(state)
self.drawAgentObjects(state)
# Information
self.previousState = state
def startGraphics(self, state):
self.layout = state.layout
layout = self.layout
self.width = layout.width
self.height = layout.height
self.make_window(self.width, self.height)
self.infoPane = InfoPane(layout, self.gridSize)
self.currentState = layout
def drawDistributions(self, state):
walls = state.layout.walls
dist = []
for x in range(walls.width):
distx = []
dist.append(distx)
for y in range(walls.height):
(screen_x, screen_y) = self.to_screen((x, y))
block = square((screen_x, screen_y),
0.5 * self.gridSize,
color=BACKGROUND_COLOR,
filled=1, behind=2)
distx.append(block)
self.distributionImages = dist
def drawStaticObjects(self, state):
layout = self.layout
if self.render_walls_beforehand:
print("rendering walls beforehand")
self.drawWalls(layout.walls)
self.food = self.drawFood(layout.food)
self.capsules = self.drawCapsules(layout.capsules)
refresh()
def drawAgentObjects(self, state):
self.agentImages = [] # (agentState, image)
for index, agent in enumerate(state.agentStates):
if agent.isPacman:
image = self.drawPacman(agent, index)
self.agentImages.append((agent, image))
else:
image = self.drawGhost(agent, index)
self.agentImages.append((agent, image))
refresh()
def swapImages(self, agentIndex, newState):
"""
Changes an image from a ghost to a pacman or vis versa (for capture)
"""
prevState, prevImage = self.agentImages[agentIndex]
for item in prevImage:
remove_from_screen(item)
if newState.isPacman:
image = self.drawPacman(newState, agentIndex)
self.agentImages[agentIndex] = (newState, image)
else:
image = self.drawGhost(newState, agentIndex)
self.agentImages[agentIndex] = (newState, image)
refresh()
def update(self, newState):
agentIndex = newState._agentMoved
agentState = newState.agentStates[agentIndex]
if self.agentImages[agentIndex][0].isPacman != agentState.isPacman:
self.swapImages(agentIndex, agentState)
prevState, prevImage = self.agentImages[agentIndex]
if agentState.isPacman:
self.animatePacman(agentState, prevState, prevImage)
else:
self.moveGhost(agentState, agentIndex, prevState, prevImage)
self.agentImages[agentIndex] = (agentState, prevImage)
if newState._foodEaten != None:
self.removeFood(newState._foodEaten, self.food)
if newState._capsuleEaten != None:
self.removeCapsule(newState._capsuleEaten, self.capsules)
self.infoPane.updateScore(newState.score)
if 'ghostDistances' in dir(newState):
self.infoPane.updateGhostDistances(newState.ghostDistances)
def make_window(self, width, height):
grid_width = (width-1) * self.gridSize
grid_height = (height-1) * self.gridSize
screen_width = 2*self.gridSize + grid_width
screen_height = 2*self.gridSize + grid_height + INFO_PANE_HEIGHT
begin_graphics(screen_width,
screen_height,
BACKGROUND_COLOR,
"Pacman")
def drawPacman(self, pacman, index):
position = self.getPosition(pacman)
screen_point = self.to_screen(position)
endpoints = self.getEndpoints(self.getDirection(pacman))
width = PACMAN_OUTLINE_WIDTH
outlineColor = PACMAN_COLOR
fillColor = PACMAN_COLOR
if self.capture:
outlineColor = TEAM_COLORS[index % 2]
fillColor = GHOST_COLORS[index]
width = PACMAN_CAPTURE_OUTLINE_WIDTH
return [circle(screen_point, PACMAN_SCALE * self.gridSize,
fillColor=fillColor, outlineColor=outlineColor,
endpoints=endpoints,
width=width)]
def getEndpoints(self, direction, position=(0, 0)):
x, y = position
pos = x - int(x) + y - int(y)
width = 30 + 80 * math.sin(math.pi * pos)
delta = width / 2
if (direction == 'West'):
endpoints = (180+delta, 180-delta)
elif (direction == 'North'):
endpoints = (90+delta, 90-delta)
elif (direction == 'South'):
endpoints = (270+delta, 270-delta)
else:
endpoints = (0+delta, 0-delta)
return endpoints
def movePacman(self, position, direction, image):
screenPosition = self.to_screen(position)
endpoints = self.getEndpoints(direction, position)
r = PACMAN_SCALE * self.gridSize
moveCircle(image[0], screenPosition, r, endpoints)
refresh()
def animatePacman(self, pacman, prevPacman, image):
if self.frameTime < 0:
print('Press any key to step forward, "q" to play')
keys = wait_for_keys()
if 'q' in keys:
self.frameTime = 0.1
if self.frameTime > 0.01 or self.frameTime < 0:
start = time.time()
fx, fy = self.getPosition(prevPacman)
px, py = self.getPosition(pacman)
frames = 1.0
for i in range(1, int(frames) + 1):
pos = px*i/frames + fx*(frames-i)/frames, py*i/frames + fy*(frames-i)/frames
self.movePacman(pos, self.getDirection(pacman), image)
refresh()
sleep(abs(self.frameTime) / frames)
else:
self.movePacman(self.getPosition(pacman), self.getDirection(pacman), image)
refresh()
def getGhostColor(self, ghost, ghostIndex):
if ghost.scaredTimer > 0:
return SCARED_COLOR
else:
return GHOST_COLORS[ghostIndex % 6]
def drawGhost(self, ghost, agentIndex):
pos = self.getPosition(ghost)
dir = self.getDirection(ghost)
(screen_x, screen_y) = (self.to_screen(pos))
coords = []
for (x, y) in GHOST_SHAPE:
coords.append((x*self.gridSize*GHOST_SIZE + screen_x,
y*self.gridSize*GHOST_SIZE + screen_y))
colour = self.getGhostColor(ghost, agentIndex)
body = polygon(coords, colour, filled=1)
WHITE = formatColor(1.0, 1.0, 1.0)
BLACK = formatColor(0.0, 0.0, 0.0)
dx = 0
dy = 0
if dir == 'North':
dy = -0.2
if dir == 'South':
dy = 0.2
if dir == 'East':
dx = 0.2
if dir == 'West':
dx = -0.2
leftEye = circle((screen_x + self.gridSize*GHOST_SIZE*(-0.3+dx/1.5),
screen_y - self.gridSize*GHOST_SIZE*(0.3-dy/1.5)),
self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
rightEye = circle((screen_x + self.gridSize*GHOST_SIZE*(0.3+dx/1.5),
screen_y - self.gridSize*GHOST_SIZE*(0.3-dy/1.5)),
self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
leftPupil = circle((screen_x + self.gridSize*GHOST_SIZE*(-0.3+dx),
screen_y - self.gridSize*GHOST_SIZE*(0.3-dy)),
self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
rightPupil = circle((screen_x + self.gridSize*GHOST_SIZE*(0.3+dx),
screen_y - self.gridSize*GHOST_SIZE*(0.3-dy)),
self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
ghostImageParts = []
ghostImageParts.append(body)
ghostImageParts.append(leftEye)
ghostImageParts.append(rightEye)
ghostImageParts.append(leftPupil)
ghostImageParts.append(rightPupil)
return ghostImageParts
def moveEyes(self, pos, dir, eyes):
(screen_x, screen_y) = (self.to_screen(pos))
dx = 0
dy = 0
if dir == 'North':
dy = -0.2
if dir == 'South':
dy = 0.2
if dir == 'East':
dx = 0.2
if dir == 'West':
dx = -0.2
moveCircle(eyes[0],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
moveCircle(eyes[1],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
moveCircle(eyes[2],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
moveCircle(eyes[3],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
def moveGhost(self, ghost, ghostIndex, prevGhost, ghostImageParts):
old_x, old_y = self.to_screen(self.getPosition(prevGhost))
new_x, new_y = self.to_screen(self.getPosition(ghost))
delta = new_x - old_x, new_y - old_y
for ghostImagePart in ghostImageParts:
move_by(ghostImagePart, delta)
refresh()
if ghost.scaredTimer > 0:
color = SCARED_COLOR
else:
color = GHOST_COLORS[ghostIndex]
edit(ghostImageParts[0], ('fill', color), ('outline', color))
self.moveEyes(self.getPosition(ghost), self.getDirection(ghost), ghostImageParts[-4:])
refresh()
def getPosition(self, agentState):
if agentState.configuration == None:
return (-1000, -1000)
return agentState.getPosition()
def getDirection(self, agentState):
if agentState.configuration == None:
return Directions.STOP
return agentState.configuration.getDirection()
def finish(self):
end_graphics()
def to_screen(self, point):
(x, y) = point
#y = self.height - y
x = (x + 1)*self.gridSize
y = (self.height - y)*self.gridSize
return (x, y)
# Fixes some TK issue with off-center circles
def to_screen2(self, point):
(x, y) = point
#y = self.height - y
x = (x + 1)*self.gridSize
y = (self.height - y)*self.gridSize
return (x, y)
def drawWalls(self, wallMatrix, wallColor=None, obsMatrix=None):
if not wallColor:
wallColor = WALL_COLOR
for xNum, x in enumerate(wallMatrix):
if self.capture and (xNum * 2) < wallMatrix.width: wallColor = TEAM_COLORS[0]
if self.capture and (xNum * 2) >= wallMatrix.width: wallColor = TEAM_COLORS[1]
for yNum, cell in enumerate(x):
if cell: # There's a wall here
pos = (xNum, yNum)
if obsMatrix and not obsMatrix[xNum][yNum]:
continue
screen = self.to_screen(pos)
screen2 = self.to_screen2(pos)
# draw each quadrant of the square based on adjacent walls
wIsWall = self.isWall(xNum-1, yNum, wallMatrix)
eIsWall = self.isWall(xNum+1, yNum, wallMatrix)
nIsWall = self.isWall(xNum, yNum+1, wallMatrix)
sIsWall = self.isWall(xNum, yNum-1, wallMatrix)
nwIsWall = self.isWall(xNum-1, yNum+1, wallMatrix)
swIsWall = self.isWall(xNum-1, yNum-1, wallMatrix)
neIsWall = self.isWall(xNum+1, yNum+1, wallMatrix)
seIsWall = self.isWall(xNum+1, yNum-1, wallMatrix)
# NE quadrant
if (not nIsWall) and (not eIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (0,91), 'arc')
if (nIsWall) and (not eIsWall):
# vertical line
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
if (not nIsWall) and (eIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
if (nIsWall) and (eIsWall) and (not neIsWall):
# outer circle
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (180,271), 'arc')
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
# NW quadrant
if (not nIsWall) and (not wIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (90,181), 'arc')
if (nIsWall) and (not wIsWall):
# vertical line
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
if (not nIsWall) and (wIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
if (nIsWall) and (wIsWall) and (not nwIsWall):
# outer circle
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (270,361), 'arc')
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(-1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
# SE quadrant
if (not sIsWall) and (not eIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (270,361), 'arc')
if (sIsWall) and (not eIsWall):
# vertical line
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
if (not sIsWall) and (eIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
if (sIsWall) and (eIsWall) and (not seIsWall):
# outer circle
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (90,181), 'arc')
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5, self.gridSize*(1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
# SW quadrant
if (not sIsWall) and (not wIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (180,271), 'arc')
if (sIsWall) and (not wIsWall):
# vertical line
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
if (not sIsWall) and (wIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
if (sIsWall) and (wIsWall) and (not swIsWall):
# outer circle
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (0,91), 'arc')
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
def isWall(self, x, y, walls):
if x < 0 or y < 0:
return False
if x >= walls.width or y >= walls.height:
return False
return walls[x][y]
def drawFood(self, foodMatrix):
foodImages = []
color = FOOD_COLOR
for xNum, x in enumerate(foodMatrix):
if self.capture and (xNum * 2) <= foodMatrix.width:
color = TEAM_COLORS[0]
if self.capture and (xNum * 2) > foodMatrix.width:
color = TEAM_COLORS[1]
imageRow = []
foodImages.append(imageRow)
for yNum, cell in enumerate(x):
if cell: # There's food here
screen = self.to_screen((xNum, yNum))
dot = circle(screen,
FOOD_SIZE * self.gridSize,
outlineColor=color, fillColor=color,
width=1)
imageRow.append(dot)
else:
imageRow.append(None)
return foodImages
def drawCapsules(self, capsules):
capsuleImages = {}
for capsule in capsules:
(screen_x, screen_y) = self.to_screen(capsule)
dot = circle((screen_x, screen_y),
CAPSULE_SIZE * self.gridSize,
outlineColor=CAPSULE_COLOR,
fillColor=CAPSULE_COLOR,
width=1)
capsuleImages[capsule] = dot
return capsuleImages
def removeFood(self, cell, foodImages):
x, y = cell
remove_from_screen(foodImages[x][y])
def removeCapsule(self, cell, capsuleImages):
x, y = cell
remove_from_screen(capsuleImages[(x, y)])
def drawExpandedCells(self, cells, cellColor=[0.0, 1.0, 0.0]):
"""
Draws an overlay of expanded grid positions for search agents
"""
n = float(len(cells))
baseColor = [1.0, 0.0, 0.0]
self.clearExpandedCells()
self.expandedCells = []
for k, cell in enumerate(cells):
screenPos = self.to_screen(cell)
cellColor = formatColor(*[(n-k) * c * .5 / n + .25 for c in baseColor])
block = square(screenPos,
0.5 * self.gridSize,
color=cellColor,
filled=1, behind=2)
self.expandedCells.append(block)
if self.frameTime < 0:
refresh()
def colorCircleCells(self, cells, fillColor=PALE_PACMAN_COLOR, direction="North", pacman_position=None):
endpoints = self.getEndpoints(direction)
width = PACMAN_OUTLINE_WIDTH
n = float(len(cells))
self.clearExpandedCells()
self.expandedCells = []
cells = list(cells)
if pacman_position:
cells.remove(pacman_position)
for k, cell in enumerate(cells):
screenPos = self.to_screen(cell)
block = circle(screenPos, PACMAN_SCALE * self.gridSize,
fillColor=fillColor, outlineColor=fillColor,
endpoints=endpoints,
width=width)
self.expandedCells.append(block)
if self.frameTime < 0:
refresh()
def colorCircleSquareCells(self, pacman_cells, square_cells=[],
circleColor=PALE_PACMAN_COLOR, squareColor=formatColor(0.0, 0.0, 1.0),
direction="North", pacman_position=None):
endpoints = self.getEndpoints(direction)
width = PACMAN_OUTLINE_WIDTH
n = float(len(pacman_cells))
self.clearExpandedCells()
self.expandedCells = []
pacman_cells = list(pacman_cells)
if pacman_position in pacman_cells:
pacman_cells.remove(pacman_position)
for k, sq_cell in enumerate(square_cells):
screenPos = self.to_screen(sq_cell)
block = square(screenPos,
0.5 * self.gridSize,
color=squareColor,
filled=1, behind=2)
self.expandedCells.append(block)
if self.frameTime < 0:
refresh()
for k, pacman_cell in enumerate(pacman_cells):
screenPos = self.to_screen(pacman_cell)
cir = circle(screenPos, PACMAN_SCALE * self.gridSize,
fillColor=circleColor, outlineColor=circleColor,
endpoints=endpoints,
width=width)
self.expandedCells.append(cir)
if self.frameTime < 0:
refresh()
def colorSquareCells(self, cells, baseColor=[0.0, 0.0, 1.0]):
"""
Draws an overlay of expanded grid positions for search agents
"""
n = float(len(cells))
self.clearExpandedCells()
self.expandedCells = []
if isinstance(baseColor, list):
cellColor = formatColor(*baseColor)
for k, cell in enumerate(cells):
screenPos = self.to_screen(cell)
block = square(screenPos,
0.5 * self.gridSize,
color=cellColor,
filled=1, behind=2)
self.expandedCells.append(block)
if self.frameTime < 0:
refresh()
def clearExpandedCells(self):
if 'expandedCells' in dir(self) and len(self.expandedCells) > 0:
for cell in self.expandedCells:
remove_from_screen(cell)
def clearCells(self, cells):
for cell in cells:
remove_from_screen(cell)
def updateDistributions(self, distributions):
"Draws an agent's belief distributions"
# copy all distributions so we don't change their state
distributions = [x.copy() for x in distributions]
if self.distributionImages == None:
self.drawDistributions(self.previousState)
for x in range(len(self.distributionImages)):
for y in range(len(self.distributionImages[0])):
image = self.distributionImages[x][y]
weights = [dist[(x, y)] for dist in distributions]
if sum(weights) != 0:
pass
# Fog of war
color = [0.0, 0.0, 0.0]
colors = GHOST_VEC_COLORS[1:] # With Pacman
if self.capture:
colors = GHOST_VEC_COLORS
for weight, gcolor in zip(weights, colors):
color = [min(1.0, c + 0.95 * g * weight ** .3) for c,g in zip(color, gcolor)]
changeColor(image, formatColor(*color))
refresh()
class FirstPersonPacmanGraphics(PacmanGraphics):
def __init__(self, zoom=1.0, showGhosts=True, capture=False, frameTime=0):
PacmanGraphics.__init__(self, zoom, frameTime=frameTime)
self.showGhosts = showGhosts
self.capture = capture
def initialize(self, state, isBlue=False):
self.isBlue = isBlue
PacmanGraphics.startGraphics(self, state)
# Initialize distribution images
walls = state.layout.walls
dist = []
self.layout = state.layout
# Draw the rest
self.distributionImages = None # initialize lazily
self.drawStaticObjects(state)
self.drawAgentObjects(state)
# Information
self.previousState = state
def lookAhead(self, config, state):
if config.getDirection() == 'Stop':
return
else:
pass
# Draw relevant ghosts
allGhosts = state.getGhostStates()
visibleGhosts = state.getVisibleGhosts()
for i, ghost in enumerate(allGhosts):
if ghost in visibleGhosts:
self.drawGhost(ghost, i)
else:
self.currentGhostImages[i] = None
def getGhostColor(self, ghost, ghostIndex):
return GHOST_COLORS[ghostIndex]
def getPosition(self, ghostState):
if not self.showGhosts and not ghostState.isPacman and ghostState.getPosition()[1] > 1:
return (-1000, -1000)
else:
return PacmanGraphics.getPosition(self, ghostState)
def add(x, y):
return (x[0] + y[0], x[1] + y[1])
# Saving graphical output
# -----------------------
# Note: to make an animated gif from this postscript output, try the command:
# convert -delay 7 -loop 1 -compress lzw -layers optimize frame* out.gif
# convert is part of imagemagick (freeware)
SAVE_POSTSCRIPT = False
POSTSCRIPT_OUTPUT_DIR = 'frames'
FRAME_NUMBER = 0
import os
def saveFrame():
"Saves the current graphical output as a postscript file"
global SAVE_POSTSCRIPT, FRAME_NUMBER, POSTSCRIPT_OUTPUT_DIR
if not SAVE_POSTSCRIPT:
return
if not os.path.exists(POSTSCRIPT_OUTPUT_DIR):
os.mkdir(POSTSCRIPT_OUTPUT_DIR)
name = os.path.join(POSTSCRIPT_OUTPUT_DIR, 'frame_%08d.ps' % FRAME_NUMBER)
FRAME_NUMBER += 1
writePostscript(name) # writes the current canvas

448
logic/graphicsUtils.py Normal file
View File

@ -0,0 +1,448 @@
# graphicsUtils.py
# ----------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import sys
import math
import random
import string
import time
import types
try:
import tkinter
except ImportError:
tkinter = None
import os.path
_Windows = sys.platform == 'win32' # True if on Win95/98/NT
_root_window = None # The root window for graphics output
_canvas = None # The canvas which holds graphics
_canvas_xs = None # Size of canvas object
_canvas_ys = None
_canvas_x = None # Current position on canvas
_canvas_y = None
_canvas_col = None # Current colour (set to black below)
_canvas_tsize = 12
_canvas_tserifs = 0
def formatColor(r, g, b):
return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))
def colorToVector(color):
return [int(x, 16) / 256.0 for x in [color[1:3], color[3:5], color[5:7]]]
if _Windows:
_canvas_tfonts = ['times new roman', 'lucida console']
else:
_canvas_tfonts = ['times', 'lucidasans-24']
pass # XXX need defaults here
def sleep(secs):
global _root_window
if _root_window == None:
time.sleep(secs)
else:
_root_window.update_idletasks()
_root_window.after(int(1000 * secs), _root_window.quit)
_root_window.mainloop()
def begin_graphics(width=640, height=480, color=formatColor(0, 0, 0), title=None):
global _root_window, _canvas, _canvas_x, _canvas_y, _canvas_xs, _canvas_ys, _bg_color
# Check for duplicate call
if _root_window is not None:
# Lose the window.
_root_window.destroy()
# Save the canvas size parameters
_canvas_xs, _canvas_ys = width - 1, height - 1
_canvas_x, _canvas_y = 0, _canvas_ys
_bg_color = color
# Create the root window
_root_window = tkinter.Tk()
_root_window.protocol('WM_DELETE_WINDOW', _destroy_window)
_root_window.title(title or 'Graphics Window')
_root_window.resizable(0, 0)
# Create the canvas object
try:
_canvas = tkinter.Canvas(_root_window, width=width, height=height)
_canvas.pack()
draw_background()
_canvas.update()
except:
_root_window = None
raise
# Bind to key-down and key-up events
_root_window.bind("<KeyPress>", _keypress)
_root_window.bind("<KeyRelease>", _keyrelease)
_root_window.bind("<FocusIn>", _clear_keys)
_root_window.bind("<FocusOut>", _clear_keys)
_root_window.bind("<Button-1>", _leftclick)
_root_window.bind("<Button-2>", _rightclick)
_root_window.bind("<Button-3>", _rightclick)
_root_window.bind("<Control-Button-1>", _ctrl_leftclick)
_clear_keys()
_leftclick_loc = None
_rightclick_loc = None
_ctrl_leftclick_loc = None
def _leftclick(event):
global _leftclick_loc
_leftclick_loc = (event.x, event.y)
def _rightclick(event):
global _rightclick_loc
_rightclick_loc = (event.x, event.y)
def _ctrl_leftclick(event):
global _ctrl_leftclick_loc
_ctrl_leftclick_loc = (event.x, event.y)
def wait_for_click():
while True:
global _leftclick_loc
global _rightclick_loc
global _ctrl_leftclick_loc
if _leftclick_loc != None:
val = _leftclick_loc
_leftclick_loc = None
return val, 'left'
if _rightclick_loc != None:
val = _rightclick_loc
_rightclick_loc = None
return val, 'right'
if _ctrl_leftclick_loc != None:
val = _ctrl_leftclick_loc
_ctrl_leftclick_loc = None
return val, 'ctrl_left'
sleep(0.05)
def draw_background():
corners = [(0, 0), (0, _canvas_ys), (_canvas_xs, _canvas_ys), (_canvas_xs, 0)]
polygon(corners, _bg_color, fillColor=_bg_color, filled=True, smoothed=False)
def _destroy_window(event=None):
sys.exit(0)
# global _root_window
# _root_window.destroy()
# _root_window = None
#print("DESTROY")
def end_graphics():
global _root_window, _canvas, _mouse_enabled
try:
try:
sleep(1)
if _root_window != None:
_root_window.destroy()
except SystemExit as e:
print('Ending graphics raised an exception:', e)
finally:
_root_window = None
_canvas = None
_mouse_enabled = 0
_clear_keys()
def clear_screen(background=None):
global _canvas_x, _canvas_y
_canvas.delete('all')
draw_background()
_canvas_x, _canvas_y = 0, _canvas_ys
def polygon(coords, outlineColor, fillColor=None, filled=1, smoothed=1, behind=0, width=1):
c = []
for coord in coords:
c.append(coord[0])
c.append(coord[1])
if fillColor == None:
fillColor = outlineColor
if filled == 0:
fillColor = ""
poly = _canvas.create_polygon(c, outline=outlineColor, fill=fillColor, smooth=smoothed, width=width)
if behind > 0:
_canvas.tag_lower(poly, behind) # Higher should be more visible
return poly
def square(pos, r, color, filled=1, behind=0):
x, y = pos
coords = [(x - r, y - r), (x + r, y - r), (x + r, y + r), (x - r, y + r)]
return polygon(coords, color, color, filled, 0, behind=behind)
def circle(pos, r, outlineColor, fillColor=None, endpoints=None, style='pieslice', width=2):
x, y = pos
x0, x1 = x - r - 1, x + r
y0, y1 = y - r - 1, y + r
if endpoints == None:
e = [0, 359]
else:
e = list(endpoints)
while e[0] > e[1]:
e[1] = e[1] + 360
return _canvas.create_arc(x0, y0, x1, y1, outline=outlineColor, fill=fillColor or outlineColor,
extent=e[1] - e[0], start=e[0], style=style, width=width)
def image(pos, file="../../blueghost.gif"):
x, y = pos
# img = PhotoImage(file=file)
return _canvas.create_image(x, y, image=tkinter.PhotoImage(file=file), anchor=tkinter.NW)
def refresh():
_canvas.update_idletasks()
def moveCircle(id, pos, r, endpoints=None):
global _canvas_x, _canvas_y
x, y = pos
# x0, x1 = x - r, x + r + 1
# y0, y1 = y - r, y + r + 1
x0, x1 = x - r - 1, x + r
y0, y1 = y - r - 1, y + r
if endpoints == None:
e = [0, 359]
else:
e = list(endpoints)
while e[0] > e[1]:
e[1] = e[1] + 360
if os.path.isfile('flag'):
edit(id, ('extent', e[1] - e[0]))
else:
edit(id, ('start', e[0]), ('extent', e[1] - e[0]))
move_to(id, x0, y0)
def edit(id, *args):
_canvas.itemconfigure(id, **dict(args))
def text(pos, color, contents, font='Helvetica', size=12, style='normal', anchor="nw"):
global _canvas_x, _canvas_y
x, y = pos
font = (font, str(size), style)
return _canvas.create_text(x, y, fill=color, text=contents, font=font, anchor=anchor)
def changeText(id, newText, font=None, size=12, style='normal'):
_canvas.itemconfigure(id, text=newText)
if font != None:
_canvas.itemconfigure(id, font=(font, '-%d' % size, style))
def changeColor(id, newColor):
_canvas.itemconfigure(id, fill=newColor)
def line(here, there, color=formatColor(0, 0, 0), width=2):
x0, y0 = here[0], here[1]
x1, y1 = there[0], there[1]
return _canvas.create_line(x0, y0, x1, y1, fill=color, width=width)
##############################################################################
### Keypress handling ########################################################
##############################################################################
# We bind to key-down and key-up events.
_keysdown = {}
_keyswaiting = {}
# This holds an unprocessed key release. We delay key releases by up to
# one call to keys_pressed() to get round a problem with auto repeat.
_got_release = None
def _keypress(event):
global _got_release
# remap_arrows(event)
_keysdown[event.keysym] = 1
_keyswaiting[event.keysym] = 1
# print(event.char, event.keycode)
_got_release = None
def _keyrelease(event):
global _got_release
# remap_arrows(event)
try:
del _keysdown[event.keysym]
except:
pass
_got_release = 1
def remap_arrows(event):
# TURN ARROW PRESSES INTO LETTERS (SHOULD BE IN KEYBOARD AGENT)
if event.char in ['a', 's', 'd', 'w']:
return
if event.keycode in [37, 101]: # LEFT ARROW (win / x)
event.char = 'a'
if event.keycode in [38, 99]: # UP ARROW
event.char = 'w'
if event.keycode in [39, 102]: # RIGHT ARROW
event.char = 'd'
if event.keycode in [40, 104]: # DOWN ARROW
event.char = 's'
def _clear_keys(event=None):
global _keysdown, _got_release, _keyswaiting
_keysdown = {}
_keyswaiting = {}
_got_release = None
def keys_pressed(d_o_e=lambda arg: _root_window.dooneevent(arg),
d_w=tkinter._tkinter.DONT_WAIT if tkinter else None):
d_o_e(d_w)
if _got_release:
d_o_e(d_w)
return list(_keysdown.keys())
def keys_waiting():
global _keyswaiting
keys = list(_keyswaiting.keys())
_keyswaiting = {}
return keys
# Block for a list of keys...
def wait_for_keys():
keys = []
while keys == []:
keys = keys_pressed()
sleep(0.05)
return keys
def remove_from_screen(x,
d_o_e=lambda arg: _root_window.dooneevent(arg),
d_w=tkinter._tkinter.DONT_WAIT if tkinter else None):
_canvas.delete(x)
d_o_e(d_w)
def _adjust_coords(coord_list, x, y):
for i in range(0, len(coord_list), 2):
coord_list[i] = coord_list[i] + x
coord_list[i + 1] = coord_list[i + 1] + y
return coord_list
def move_to(object, x, y=None,
d_o_e=lambda arg: _root_window.dooneevent(arg),
d_w=tkinter._tkinter.DONT_WAIT if tkinter else None):
if y is None:
try:
x, y = x
except:
raise Exception('incomprehensible coordinates')
horiz = True
newCoords = []
current_x, current_y = _canvas.coords(object)[0:2] # first point
for coord in _canvas.coords(object):
if horiz:
inc = x - current_x
else:
inc = y - current_y
horiz = not horiz
newCoords.append(coord + inc)
_canvas.coords(object, *newCoords)
d_o_e(d_w)
def move_by(object, x, y=None,
d_o_e=lambda arg: _root_window.dooneevent(arg),
d_w=tkinter._tkinter.DONT_WAIT if tkinter else None, lift=False):
if y is None:
try:
x, y = x
except:
raise Exception('incomprehensible coordinates')
horiz = True
newCoords = []
for coord in _canvas.coords(object):
if horiz:
inc = x
else:
inc = y
horiz = not horiz
newCoords.append(coord + inc)
_canvas.coords(object, *newCoords)
d_o_e(d_w)
if lift:
_canvas.tag_raise(object)
def writePostscript(filename):
"Writes the current canvas to a postscript file."
psfile = open(filename, 'w')
psfile.write(_canvas.postscript(pageanchor='sw',
y='0.c',
x='0.c'))
psfile.close()
ghost_shape = [
(0, - 0.5),
(0.25, - 0.75),
(0.5, - 0.5),
(0.75, - 0.75),
(0.75, 0.5),
(0.5, 0.75),
(- 0.5, 0.75),
(- 0.75, 0.5),
(- 0.75, - 0.75),
(- 0.5, - 0.5),
(- 0.25, - 0.75)
]
if __name__ == '__main__':
begin_graphics()
clear_screen()
ghost_shape = [(x * 10 + 20, y * 10 + 20) for x, y in ghost_shape]
g = polygon(ghost_shape, formatColor(1, 1, 1))
move_to(g, (50, 50))
circle((150, 150), 20, formatColor(0.7, 0.3, 0.0), endpoints=[15, - 15])
sleep(2)

95
logic/keyboardAgents.py Normal file
View File

@ -0,0 +1,95 @@
# keyboardAgents.py
# -----------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from game import Agent
from game import Directions
import random
class KeyboardAgent(Agent):
"""
An agent controlled by the keyboard.
"""
# NOTE: Arrow keys also work.
WEST_KEY = 'a'
EAST_KEY = 'd'
NORTH_KEY = 'w'
SOUTH_KEY = 's'
STOP_KEY = 'q'
def __init__(self, index=0):
self.lastMove = Directions.STOP
self.index = index
self.keys = []
def getAction(self, state):
from graphicsUtils import keys_waiting
from graphicsUtils import keys_pressed
keys = keys_waiting() + keys_pressed()
if keys != []:
self.keys = keys
legal = state.getLegalActions(self.index)
move = self.getMove(legal)
if move == Directions.STOP:
# Try to move in the same direction as before
if self.lastMove in legal:
move = self.lastMove
if (self.STOP_KEY in self.keys) and Directions.STOP in legal:
move = Directions.STOP
if move not in legal:
move = random.choice(legal)
self.lastMove = move
return move
def getMove(self, legal):
move = Directions.STOP
if (self.WEST_KEY in self.keys or 'Left' in self.keys) and Directions.WEST in legal:
move = Directions.WEST
if (self.EAST_KEY in self.keys or 'Right' in self.keys) and Directions.EAST in legal:
move = Directions.EAST
if (self.NORTH_KEY in self.keys or 'Up' in self.keys) and Directions.NORTH in legal:
move = Directions.NORTH
if (self.SOUTH_KEY in self.keys or 'Down' in self.keys) and Directions.SOUTH in legal:
move = Directions.SOUTH
return move
class KeyboardAgent2(KeyboardAgent):
"""
A second agent controlled by the keyboard.
"""
# NOTE: Arrow keys also work.
WEST_KEY = 'j'
EAST_KEY = "l"
NORTH_KEY = 'i'
SOUTH_KEY = 'k'
STOP_KEY = 'u'
def getMove(self, legal):
move = Directions.STOP
if (self.WEST_KEY in self.keys) and Directions.WEST in legal:
move = Directions.WEST
if (self.EAST_KEY in self.keys) and Directions.EAST in legal:
move = Directions.EAST
if (self.NORTH_KEY in self.keys) and Directions.NORTH in legal:
move = Directions.NORTH
if (self.SOUTH_KEY in self.keys) and Directions.SOUTH in legal:
move = Directions.SOUTH
return move

175
logic/layout.py Normal file
View File

@ -0,0 +1,175 @@
# layout.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from util import manhattanDistance
from game import Grid
import os
import random
from functools import reduce
VISIBILITY_MATRIX_CACHE = {}
class Layout:
"""
A Layout manages the static information about the game board.
"""
def __init__(self, layoutText):
self.width = len(layoutText[0])
self.height = len(layoutText)
self.walls = Grid(self.width, self.height, False)
self.food = Grid(self.width, self.height, False)
self.capsules = []
self.agentPositions = []
self.numGhosts = 0
self.processLayoutText(layoutText)
self.layoutText = layoutText
self.totalFood = len(self.food.asList())
# self.initializeVisibilityMatrix()
def getNumGhosts(self):
return self.numGhosts
def initializeVisibilityMatrix(self):
global VISIBILITY_MATRIX_CACHE
if reduce(str.__add__, self.layoutText) not in VISIBILITY_MATRIX_CACHE:
from game import Directions
vecs = [(-0.5, 0), (0.5, 0),(0, -0.5),(0, 0.5)]
dirs = [Directions.NORTH, Directions.SOUTH, Directions.WEST, Directions.EAST]
vis = Grid(self.width, self.height, {Directions.NORTH:set(), Directions.SOUTH:set(), Directions.EAST:set(), Directions.WEST:set(), Directions.STOP:set()})
for x in range(self.width):
for y in range(self.height):
if self.walls[x][y] == False:
for vec, direction in zip(vecs, dirs):
dx, dy = vec
nextx, nexty = x + dx, y + dy
while (nextx + nexty) != int(nextx) + int(nexty) or not self.walls[int(nextx)][int(nexty)]:
vis[x][y][direction].add((nextx, nexty))
nextx, nexty = x + dx, y + dy
self.visibility = vis
VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)] = vis
else:
self.visibility = VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)]
def isWall(self, pos):
x, col = pos
return self.walls[x][col]
def get_all_coords_list(self):
all_coords_list = []
for x in range(self.width):
for y in range(self.height):
all_coords_list.append((x, y))
return all_coords_list
def get_non_outer_wall_coords_list(self):
outer_wall_coords_list = []
for x in range(self.width):
for y in range(self.height):
if ((not (x == 0 or x == self.width - 1))
and (not (y == 0 or y == self.height - 1))):
outer_wall_coords_list.append((x, y))
return outer_wall_coords_list
def getRandomLegalPosition(self):
x = random.choice(list(range(self.width)))
y = random.choice(list(range(self.height)))
while self.isWall((x, y)):
x = random.choice(list(range(self.width)))
y = random.choice(list(range(self.height)))
return (x, y)
def getRandomCorner(self):
poses = [(1, 1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
return random.choice(poses)
def getFurthestCorner(self, pacPos):
poses = [(1, 1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def isVisibleFrom(self, ghostPos, pacPos, pacDirection):
row, col = [int(x) for x in pacPos]
return ghostPos in self.visibility[row][col][pacDirection]
def __str__(self):
return "\n".join(self.layoutText)
def deepCopy(self):
return Layout(self.layoutText[:])
def processLayoutText(self, layoutText):
"""
Coordinates are flipped from the input format to the (x,y) convention here
The shape of the maze. Each character
represents a different type of object.
% - Wall
. - Food
o - Capsule
G - Ghost
P - Pacman
Other characters are ignored.
"""
maxY = self.height - 1
for y in range(self.height):
for x in range(self.width):
layoutChar = layoutText[maxY - y][x]
self.processLayoutChar(x, y, layoutChar)
self.agentPositions.sort()
self.agentPositions = [(i == 0, pos) for i, pos in self.agentPositions]
def processLayoutChar(self, x, y, layoutChar):
if layoutChar == '%':
self.walls[x][y] = True
elif layoutChar == '.':
self.food[x][y] = True
elif layoutChar == 'o':
self.capsules.append((x, y))
elif layoutChar == 'P':
self.agentPositions.append((0, (x, y)))
elif layoutChar in ['G']:
self.agentPositions.append((1, (x, y)))
self.numGhosts += 1
elif layoutChar in ['1', '2', '3', '4']:
self.agentPositions.append((int(layoutChar), (x, y)))
self.numGhosts += 1
def getLayout(name, back=2):
if name.endswith('.lay'):
layout = tryToLoad('layouts/' + name)
if layout == None:
layout = tryToLoad(name)
else:
layout = tryToLoad('layouts/' + name + '.lay')
if layout == None:
layout = tryToLoad(name + '.lay')
if layout == None and back >= 0:
curdir = os.path.abspath('.')
os.chdir('..')
layout = getLayout(name, back - 1)
os.chdir(curdir)
return layout
def tryToLoad(fullname):
if(not os.path.exists(fullname)):
return None
f = open(fullname)
try:
return Layout([line.strip() for line in f])
finally:
f.close()

View File

@ -0,0 +1,37 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%. % %.%
% %%%%% % %%% %%% %%%%%%% % %
% % % % % % % %
%%%%% %%%%% %%% % % % %%% %%%%% % %%%
% % % % % % % % % % % % %
% %%% % % % %%% %%%%% %%% % %%% %%% %
% % % % % % % % %
%%% %%%%%%%%% %%%%%%% %%% %%% % % % %
% % % % % % %
% % %%%%% % %%% % % %%% % %%% %%% % %
% % % % % % % % % % % % % %
% % % %%%%%%% % %%%%%%%%% %%% % %%% %
% % % % % % % % % %
%%% %%% % %%%%% %%%%% %%% %%% %%%%% %
% % % % % % % % %
% % % % % % %%% %%% %%% % % % % % %
% % % % % %% % % % % % % % % %
% % %%%%% % %%% %%% % %%% %%% %%%%%
% % % % % % % % % % %
% %%% % % % %%% %%% %%%%%%%%% % %%%
% % % % % % %
% %%% %%%%%%%%%%%%%%%%%%%%% % % %%% %
% % % %
% % % %%%%% %%% % % % % %%%%%%%%%%%%%
% % % % % % % % % % % %
% % %%% %%% % % % %%%%%%%%% %%% % % %
% % % % % % %P % % % % % %
% %%% %%% %%% % %%% % % %%%%% % %%%%%
% % % % % % % %
%%% % %%%%% %%%%% %%% %%% % %%% % %%%
% % % % % % % % % % % % % % %
% % %%% % % % % %%%%%%%%% % % % % % %
% % % %
% % % %%% %%% %%%%%%% %%% %%% %%% %
%.% % % % % .%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37
logic/layouts/bigMaze.lay Normal file
View File

@ -0,0 +1,37 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % %
% %%%%%%% % %%% % %%% %%% %%%%%%% % %
% % % % % % % %
%%%%% %%%%% %%% % % % %%% %%%%% % %%%
% % % % % % % % % % % % % %
% %%% % % % %%% %%%%% %%% % %%% %%% %
% % % % % % % % %
%%% %%%%%%%%% %%%%%%% %%% %%% % % % %
% % % % % % %
% % %%%%% % %%% % % %%% % %%% %%% % %
% % % % % % % % % % % % % %
% % % %%%%%%% % %%%%%%%%% %%% % %%% %
% % % % % % % % % %
%%% %%% % %%%%% %%%%% %%% %%% %%%%% %
% % % % % % % % % % % %
% % % % % %%% %%% %%% %%% % % % % % %
% % % % % % % % %
%%% %%%%%%% % % %%%%% %%% % %%% %%%%%
% % % % % % % % % %
%%%%% % % %%%%%%%%% %%%%%%%%%%% % %%%
% % % % % % % % %
% %%% %%%%% %%%%%%%%% %%%%% % % %%% %
% % % % % % %
% % % %%%%% %%% % % % % %%%%%%%%%%%%%
% % % % % % % % % % % %
% % %%% %%% % % % %%%%%%%%% %%% % % %
% % % % % % % % % % % % %
% %%% %%% %%%%% %%% % % %%%%% % %%%%%
% % % % % % % % %
%%% % %%%%% %%%%% %%% %%% % %%% % %%%
% % % % % % % % % % % % % % %
% % %%% % % % % %%%%%%%%% % % % % % %
% % % % % %
% % % % %%% %%% %%%%%%% %%% %%% %%% %
%.% % % % % % % % P%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,8 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%.%.........%% G % o%%%%.....%
%.%.%%%%%%%.%%%%%% %%%%%%%.%%.%
%............%...%............%
%%%%%...%%%.. ..%.%...%.%%%
%o%%%.%%%%%.%%%%%%%.%%%.%.%%%%%
% ..........Po...%...%. o%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,15 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%.....%.................%.....%
%.%%%.%.%%%.%%%%%%%.%%%.%.....%
%.%...%.%......%......%.%.....%
%...%%%.%.%%%%.%.%%%%...%%%...%
%%%.%.%.%.%......%..%.%...%.%%%
%...%.%%%.%.%%% %%%.%.%%%.%...%
%.%%%.......% %.......%%%.%
%...%.%%%%%.%%%%%%%.%.%%%.%...%
%%%.%...%.%....%....%.%...%.%%%
%...%%%.%.%%%%.%.%%%%.%.%%%...%
%.......%......%......%.....%.%
%.....%.%%%.%%%%%%%.%%%.%.%%%.%
%.....%........P....%...%.....%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,14 @@
%%%%%%%%%%%%%%
%. . . . . % %
% % %
%. . . . . %G%
% % %
%. . . . . % %
% % %
%. . . . . % %
% P %G%
%. . . . . % %
% % %
%. . . . . % %
% % %
%%%%%%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%
%G. G ....%
%.% % %%%%%% %.%%.%
%.%o% % o% %.o%.%
%.%%%.% %%% %..%.%
%..... P %..%G%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,9 @@
%%%%%%%%%%%%%%%%%%%%
%o...%........%...o%
%.%%.%.%%..%%.%.%%.%
%...... G GG%......%
%.%.%%.%% %%%.%%.%.%
%.%....% ooo%.%..%.%
%.%.%%.% %% %.%.%%.%
%o%......P....%....%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,11 @@
%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %
% P %
% %
% %
% %
%. %
%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,8 @@
%%%%%%
%....%
% %%.%
% %%.%
%.P .%
%.%%%%
%....%
%%%%%%

View File

@ -0,0 +1,4 @@
%%%
% %
%P%
%%%

View File

@ -0,0 +1,4 @@
%%%%
% P%
%. %
%%%%

View File

@ -0,0 +1,4 @@
%%%%
%%P%
%% %
%%%%

View File

@ -0,0 +1,4 @@
%%%%
% P%
%% %
%%%%

View File

@ -0,0 +1,5 @@
%%%%%
%% %%
% P %
%% %%
%%%%%

View File

@ -0,0 +1,5 @@
%%%%%
%% %%
%% %%
% P %
%%%%%

View File

@ -0,0 +1,5 @@
%%%%%
%% P%
% %%
%% %
%%%%%

View File

@ -0,0 +1,5 @@
%%%%%
%% %%
% P %
% %
%%%%%

View File

@ -0,0 +1,5 @@
%%%%%
% P%
% % %
% %
%%%%%

View File

@ -0,0 +1,6 @@
%%%%%
%% %%
%% %%
%%P%%
%% %%
%%%%%

View File

@ -0,0 +1,6 @@
%%%%%
% %P%
% % %
% % %
% %
%%%%%

View File

@ -0,0 +1,6 @@
%%%%%%
% P%
% %% %
% % %
% %
%%%%%%

View File

@ -0,0 +1,4 @@
%%%%
%P%%
%. %
%%%%

View File

@ -0,0 +1,4 @@
%%%%
% P%
%.%%
%%%%

View File

@ -0,0 +1,5 @@
%%%%%%%%%
% P %
%.%% %%.%
%.%. .%
%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%%%%%
%.......%
%%%%.%% %
% P %
%%%%%%%%%

View File

@ -0,0 +1,4 @@
%%%%%
% %
%.%P%
%%%%%

View File

@ -0,0 +1,11 @@
%%%%%%%%%%%%%%%%%%%%
%o...%........%....%
%.%%.%.%%%%%%.%.%%.%
%.%..............%.%
%.%.%%.%% %%.%%.%.%
%......%G G%......%
%.%.%%.%%%%%%.%%.%.%
%.%..............%.%
%.%%.%.%%%%%%.%.%%.%
%....%...P....%...o%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,14 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%. % % % %.%
% % % %%%%%% %%%%%%% % %
% % % % % %
%%%%% %%%%% %%% %% %%%%% % %%%
% % % % % % % % %
% %%% % % % %%%%%%%% %%% %%% %
% % %% % % % %
%%% % %%%%%%% %%%% %%% % % % %
% % %% % % %
% % %%%%% % %%%% % %%% %%% % %
% % % % % % %%% %
%. %P%%%%% % %%% % .%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,18 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P%
% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% %
% %% % % %%% %%% %% ... %
% %% % % % % %%%% %%%%%%%%% %% %%%%%
% %% % % % % % %% %% %% ... %
% %% % % % % % %%%% %%% %%%%%% %
% % % % % % %% %%%%%%%% ... %
% %% % % %%%%%%%% %% %% %%%%%
% %% % %% %%%%%%%%% %% ... %
% %%%%%% %%%%%%% %% %%%%%% %
%%%%%% % %%%% %% % ... %
% %%%%%% %%%%% % %% %% %%%%%
% %%%%%% % %%%%% %% %
% %%%%%% %%%%%%%%%%% %% %% %
%%%%%%%%%% %%%%%% %
%. %%%%%%%%%%%%%%%% ...... %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,18 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P%
% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %
% %% % % %%%%%%% %% %
% %% % % % % %%%% %%%%%%%%% %% %%%%%
% %% % % % % %% %% %
% %% % % % % % %%%% %%% %%%%%% %
% % % % % % %% %%%%%%%% %
% %% % % %%%%%%%% %% %% %%%%%
% %% % %% %%%%%%%%% %% %
% %%%%%% %%%%%%% %% %%%%%% %
%%%%%% % %%%% %% % %
% %%%%%% %%%%% % %% %% %%%%%
% %%%%%% % %%%%% %% %
% %%%%%% %%%%%%%%%%% %% %% %
%%%%%%%%%% %%%%%% %
%. %%%%%%%%%%%%%%%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,6 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%.% ....%% G %%%%%% o%%.%
%.%o%%%%%%%.%%%%%%% %%%%%.%
% %%%.%%%%%.%%%%%%%.%%%.%.%%%.%
% ..........Po...%.........%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,18 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P%
% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% %
% %% % % %%% %%% %%GG %
% %% % % % % %%%% %%%%%%%%% %% %%%%%
% %% % % % % % %%GG %% %
% %% % % % % % %%%%% %%% %%%%%% %
% %% % % % % %% %%%%%%%%% %
% %% % % %%%%%%%% %% %% %%%%%
% %% % %% %%%%%%%%% %% %
% %%% %% %%%%%%% %% %%%%%% %
%%%%%% % % %% %% %
% %%%%%% %% %% %% %% %%%%%
% %%%%%% % %%%%% %% %
% %%%% %%%%% %%%%%% %
%%%%%%%% % %%%%%% %
%. %%%%%%%%%%%%%%%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,8 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%............%%%%%............%
%%%.%...%%%.........%.%...%.%%%
%...%%%.%.%%%%.%.%%%%%%.%%%...%
%.%.....%......%......%.....%.%
%.%%%.%%%%%.%%%%%%%.%%%.%.%%%%%
%.....%........P....%...%.....%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%%%%%
%.P G%
% %.%G%%%
%G %%%
%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%...%.........%%...%
%.%.%.%%%%%%%%%%.%.%
%..................%
%%%%%%%%.%.%%%%%%%P%
%%%%%%%%....... %
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,9 @@
%%%%%%%%%%%%%%%%%%%%%%%%%
% P.... .... .. %
% .. ... ... ... .. %
% ... ... ... .. %
% ... .... G .. %
% ... ... ... .. %
% ... ... ... .. %
% ....... .... ..o%
%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,23 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P%
% % %
% % %
% % %
% % %
% % %
% % % %
% % % %
% % % %
% % % %
% % % %
% % % %
% % % %
%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
% % %
% % %
% % %
% %
% %
% %
%. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%..................%
%..................%
%........P.........%
%..................%
%..................%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,27 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%............%%............%
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
%o%%%%.%%%%%.%%.%%%%%.%%%%o%
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
%..........................%
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
%......%%....%%....%%......%
%%%%%%.%%%%% %% %%%%%.%%%%%%
%%%%%%.%%%%% %% %%%%%.%%%%%%
%%%%%%.% %.%%%%%%
%%%%%%.% %%%% %%%% %.%%%%%%
% . %G GG G% . %
%%%%%%.% %%%%%%%%%% %.%%%%%%
%%%%%%.% %.%%%%%%
%%%%%%.% %%%%%%%%%% %.%%%%%%
%............%%............%
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
%o..%%....... .......%%..o%
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
%......%%....%%....%%......%
%.%%%%%%%%%%.%%.%%%%%%%%%%.%
%.............P............%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%
% .%
% G%
% P%
%%%%%

View File

@ -0,0 +1,5 @@
%%%%%
% .%
% G %
% P%
%%%%%

View File

@ -0,0 +1,5 @@
%%%%%
%...%
%.G.%
%..P%
%%%%%

View File

@ -0,0 +1,6 @@
%%%%%%
% . %
%G %
%G %
% P %
%%%%%%

View File

@ -0,0 +1,6 @@
%%%%%%
% . %
%G G%
% GG %
% P %
%%%%%%

View File

@ -0,0 +1,6 @@
%%%%%%
%....%
%G G%
%.GG.%
%..P.%
%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%
%..G ..%
%%%%.%% %
% P %
%.%% %%.%
%.%. .%
%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%
%..G ..%
%%%%.%% %
% P %
%.%% %%.%
%.%.G .%
%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%
%% . %
%G G .%
% %%G %
% G%
% P%.%
%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%o....o%GGGG%o....o%
%..%...%% %%...%..%
%.%o.%........%.o%.%
%.o%.%.%%%%%%.%.%o.%
%........P.........%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%......%G G%......%
%.%%...%% %%...%%.%
%.%o.%........%.o%.%
%.%%.%.%%%%%%.%.%%.%
%........P.........%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,10 @@
%%%%%%%%%%%%%%%%%%%%%%
% %% % % %
% %%%%%% % %%%%%% %
%%%%%% P % %
% % %%%%%% %% %%%%%
% %%%% % % %
% %%% %%% % %
%%%%%%%%%% %%%%%% %
%. %% %
%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,10 @@
%%%%%%%%%%%%%
% %% %
% %%%%%% %
%%%%%% P%
% % %%%%%%
% %%%% % %
% %%%%
%%%% %%%% %
%. %%
%%%%%%%%%%%%%

View File

@ -0,0 +1,15 @@
%%%%%%%%%
%.. % G %
%%% %%%%%
% %
%%%%%%% %
% %
% %%%%% %
% % %
%%%%% % %
% %o%
% %%%%%%%
% .%
%%%%%%%.%
%Po .%
%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%%%%%%%%%%%%%%%%
%. ...P .%
%.%%.%%.%%.%%.%% %.%
% %% %..... %.%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,10 @@
%%%%%
% . %
%.G.%
% . %
%. .%
% %
% .%
% %
%P .%
%%%%%

View File

@ -0,0 +1,3 @@
%%%%%%%%%%
%. P%
%%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%
%.P %
%%% %
%. %
%%%%%

View File

@ -0,0 +1,3 @@
%%%%%
%. P%
%%%%%

View File

@ -0,0 +1,8 @@
%%%%%%%%
%. .%
% P %
% %%%% %
% % %
% % %%%%
%.% .%
%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%
% P%
% %%% %
% % %
%% %%
%. %%%%
%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%
% G %...%
%%%%%%% %
%Po %
%.%%.%%.%
%.%%....%
%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%
%.. ..%
%%%%.%% %
% P %
%.%% %%.%
%.%. .%
%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%%%%
% P G%
%G%%%%%%
%.... %
%%%%%%%%

View File

@ -0,0 +1,13 @@
%%%%%%%%%%%%%%%%%%%%
%o...%........%...o%
%.%%.%.%%..%%.%.%%.%
%.%.....%..%.....%.%
%.%.%%.%% %%.%%.%.%
%...... GGGG%.%....%
%.%....%%%%%%.%..%.%
%.%....% oo%.%..%.%
%.%....% %%%%.%..%.%
%.%...........%..%.%
%.%%.%.%%%%%%.%.%%.%
%o...%...P....%...o%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%. ..% %
%.%%.%%.%%.%%.%% % %
% P % %
%%%%%%%%%%%%%%%%%% %
%..... %
%%%%%%%%%%%%%%%%%%%%

728
logic/logic.py Normal file
View File

@ -0,0 +1,728 @@
# logic.py
# --------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""Representations and Inference for the CS 188 Logic Project
Code originally from https://code.google.com/p/aima-python/
Modified heavily with additional convenience classes and functions as well
as an interface to the pycosat (picoSAT wrapper) library.
https://pypi.python.org/pypi/pycosat.
Original package contained implementations of functions and data structures
for Knowledge bases and First-Order Logic.
"""
import itertools, re
from typing import Tuple
import agents
from logic_utils import *
import pycosat
#______________________________________________________________________________
class Expr:
"""A symbolic mathematical expression. We use this class for logical
expressions, and for terms within logical expressions. In general, an
Expr has an op (operator) and a list of args. The op can be:
Null-ary (no args) op:
A number, representing the number itself. (e.g. Expr(42) => 42)
A symbol, representing a variable or constant (e.g. Expr('F') => F)
Unary (1 arg) op:
'~', '-', representing NOT, negation (e.g. Expr('~', Expr('P')) => ~P)
Binary (2 arg) op:
'>>', '<<', representing forward and backward implication
'+', '-', '*', '/', '**', representing arithmetic operators
'<', '>', '>=', '<=', representing comparison operators
'<=>', '^', representing logical equality and XOR
N-ary (0 or more args) op:
'&', '|', representing conjunction and disjunction
A symbol, representing a function term or FOL proposition
Exprs can be constructed with operator overloading: if x and y are Exprs,
then so are x + y and x & y, etc. Also, if F and x are Exprs, then so is
F(x); it works by overloading the __call__ method of the Expr F. Note
that in the Expr that is created by F(x), the op is the str 'F', not the
Expr F. See http://www.python.org/doc/current/ref/specialnames.html
to learn more about operator overloading in Python.
WARNING: x == y and x != y are NOT Exprs. The reason is that we want
to write code that tests 'if x == y:' and if x == y were the same
as Expr('==', x, y), then the result would always be true; not what a
programmer would expect. But we still need to form Exprs representing
equalities and disequalities. We concentrate on logical equality (or
equivalence) and logical disequality (or XOR). You have 3 choices:
(1) Expr('<=>', x, y) and Expr('^', x, y)
Note that ^ is bitwise XOR in Python (and Java and C++)
(2) expr('x <=> y') and expr('x =/= y').
See the doc string for the function expr.
(3) (x % y) and (x ^ y).
It is very ugly to have (x % y) mean (x <=> y), but we need
SOME operator to make (2) work, and this seems the best choice.
WARNING: if x is an Expr, then so is x + 1, because the int 1 gets
coerced to an Expr by the constructor. But 1 + x is an error, because
1 doesn't know how to add an Expr. (Adding an __radd__ method to Expr
wouldn't help, because int.__add__ is still called first.) Therefore,
you should use Expr(1) + x instead, or ONE + x, or expr('1 + x').
"""
# Initialize a counter object
counter = 0
def __init__(self, op, *args):
"Op is a string or number; args are Exprs (or are coerced to Exprs)."
assert isinstance(op, str) or (isnumber(op) and not args)
self.op = num_or_str(op)
self.args = tuple(map(expr, args)) ## Coerce args to Exprs
if not args and not is_prop_symbol(self.op):
raise SyntaxError("Unacceptable symbol base name (%s). Name must start with an upper-case alphabetic character that and is not TRUE or FALSE. Furthermore, only the following are allowed: capital and lower case alphabetic, 0-9, _, \",\", [, and ]." % self.op)
# Increment the counter when an object is created
type(self).counter += 1
def __call__(self, *args):
"""Self must be a symbol with no args, such as Expr('F'). Create a new
Expr with 'F' as op and the args as arguments."""
assert is_symbol(self.op) and not self.args
return Expr(self.op, *args)
def __repr__(self):
"Show something like 'P' or 'P(x, y)', or '~P' or '(P | Q | R)'"
if not self.args: # Constant or proposition with arity 0
return str(self.op)
elif is_symbol(self.op): # Functional or propositional operator
return '%s(%s)' % (self.op, ', '.join(map(repr, self.args)))
elif len(self.args) == 1: # Prefix operator
return self.op + repr(self.args[0])
else: # Infix operator
return '(%s)' % (' '+self.op+' ').join(map(repr, self.args))
def __eq__(self, other):
"""x and y are equal iff their ops and args are equal."""
return (other is self) or (isinstance(other, Expr)
and self.op == other.op and self.args == other.args)
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
"Need a hash method so Exprs can live in dicts."
return hash(self.op) ^ hash(tuple(self.args))
# See http://www.python.org/doc/current/lib/module-operator.html
# Not implemented: not, abs, pos, concat, contains, *item, *slice
def __lt__(self, other): return Expr('<', self, other)
def __le__(self, other): return Expr('<=', self, other)
def __ge__(self, other): return Expr('>=', self, other)
def __gt__(self, other): return Expr('>', self, other)
def __add__(self, other): return Expr('+', self, other)
def __sub__(self, other): return Expr('-', self, other)
def __and__(self, other): return Expr('&', self, other)
def __div__(self, other): return Expr('/', self, other)
def __truediv__(self, other):return Expr('/', self, other)
def __invert__(self): return Expr('~', self)
def __lshift__(self, other): return Expr('<<', self, other)
def __rshift__(self, other): return Expr('>>', self, other)
def __mul__(self, other): return Expr('*', self, other)
def __neg__(self): return Expr('-', self)
def __or__(self, other): return Expr('|', self, other)
def __pow__(self, other): return Expr('**', self, other)
def __xor__(self, other): return Expr('^', self, other)
def __mod__(self, other): return Expr('<=>', self, other)
class PropSymbolExpr(Expr):
"""An extension of Expr intended to represent a symbol. This SymbolExpr
is a convenience for naming symbols, especially symbols whose names
indicate an indexed value (e.g. Position[x,y] or Fluent[t]).
Symbol name must begin with a capital letter. This class helps to add
brackets with enumerated indices to the end of the name.
"""
# copied from logicPlan.py; preferably do this better
pacman_str = 'P'
food_str = 'FOOD'
wall_str = 'WALL'
DIRECTIONS = {'North', 'South', 'East', 'West'}
# rules
double_index = {pacman_str, food_str, wall_str}
time_index = {pacman_str, food_str} | DIRECTIONS
all_checked = double_index | time_index
def __init__(self, sym_str: str, *index: Tuple[int], time: int = None):
"""Constructor taking a propositional logic symbol name and an optional set of index values,
creating a symbol with the base name followed by brackets with the specific
indices.
sym_str: String representing base name for symbol. Must begin with a capital letter.
Examples:
>>> red = PropSymbolExpr("R")
>>> print(red)
R
>>> turnLeft7 = PropSymbolExpr("Left",7)
>>> print(turnLeft7)
Left[7]
>>> pos_2_3 = PropSymbolExpr("P",2,3)
>>> print(pos_2_3)
P[2,3]
"""
if not is_prop_symbol(sym_str):
raise SyntaxError("Unacceptable symbol base name (%s). Name must start with an upper-case alphabetic character that and is not TRUE or FALSE. Furthermore, only the following are allowed: capital and lower case alphabetic, 0-9, _, \",\", [, and ]." % sym_str)
if sym_str in self.all_checked:
if sym_str in self.double_index:
if len(index) != 2:
raise SyntaxError("Unexpected " + sym_str + " Symbol. Was expecting 2 coordinates.")
elif len(index) != 0:
raise SyntaxError("Unexpected " + sym_str + " Symbol. Was expecting 0 coordinates.")
if sym_str in self.time_index:
if time == None:
raise SyntaxError("Unexpected " + sym_str + " Symbol. Was expecting time stamp.")
elif time != None:
raise SyntaxError("Unexpected " + sym_str + " Symbol. Was expecting no time stamp.")
self.sym_str = sym_str
self.indicies = index
self.time = time
if len(index) > 0:
if len(index) > 4:
raise SyntaxError("Too many arguments to SymbolExpr constructor. SymbolExpr(symbol_str, [index1], [index2], [index3], [index4], time=[time]), or fewer indicies -- possibly 0.")
if len(index) == 1:
sym_str = '%s[%d]' % (sym_str, *index)
elif len(index) == 2:
sym_str = '%s[%d,%d]' % (sym_str, *index)
elif len(index) == 3:
sym_str = '%s[%d,%d,%d]' % (sym_str, *index)
elif len(index) == 4:
sym_str = '%s[%d,%d,%d,%d]' % (sym_str, *index)
if time != None:
sym_str = '%s_%d' % (sym_str, int(time))
Expr.__init__(self, sym_str)
def getBaseName(self):
return self.sym_str
def getIndex(self):
return self.indicies
def getTime(self):
return self.time
def parseExpr(symbol):
"""A simple expression parser, takes in a PropSymbolExpr and returns
its deconstruction in the form ( sym_str, indices, time ).
Examples:
>>> parseExpr("North[3]")
('North', None, (3))
>>> parseExpr("A")
(A, None, ())
>>> parseExpr("P[3,4]_1")
('P', 1, (3, 4))
"""
tokens = re.split(r"_", str(symbol))
time = None
if len(tokens) == 2:
symbol = tokens[0]
time = int(tokens[1])
tokens = re.findall(r"[\w]+", str(symbol))
if len(tokens) == 1:
return (tokens[0], (), time)
return (tokens[0], tuple(map(int,tokens[1:])), time)
def expr(s):
"""Create an Expr representing a logic expression by parsing the input
string. Symbols and numbers are automatically converted to Exprs.
In addition you can use alternative spellings of these operators:
'x ==> y' parses as (x >> y) # Implication
'x <== y' parses as (x << y) # Reverse implication
'x <=> y' parses as (x % y) # Logical equivalence
'x =/= y' parses as (x ^ y) # Logical disequality (xor)
But BE CAREFUL; precedence of implication is wrong. expr('P & Q ==> R & S')
is ((P & (Q >> R)) & S); so you must use expr('(P & Q) ==> (R & S)').
>>> expr('P <=> Q(1)')
(P <=> Q(1))
>>> expr('P & Q | ~R(x, F(x))')
((P & Q) | ~R(x, F(x)))
"""
if isinstance(s, Expr): return s
if isnumber(s): return Expr(s)
## Replace the alternative spellings of operators with canonical spellings
s = s.replace('==>', '>>').replace('<==', '<<')
s = s.replace('<=>', '%').replace('=/=', '^')
## Replace a symbol or number, such as 'P' with 'Expr("P")'
s = re.sub(r'([a-zA-Z0-9_.]+)', r'Expr("\1")', s)
## Now eval the string. (A security hole; do not use with an adversary.)
return eval(s, {'Expr':Expr})
def is_symbol(s):
"A string s is a symbol if it starts with an alphabetic char."
return isinstance(s, str) and s[:1].isalpha()
def is_var_symbol(s):
"A logic variable symbol is an initial-lowercase string."
return is_symbol(s) and s[0].islower()
def is_prop_symbol(s):
"""A proposition logic symbol is an initial-uppercase string other than
TRUE or FALSE."""
return is_symbol(s) and s[0].isupper() and s != 'TRUE' and s != 'FALSE' and re.match(r'[a-zA-Z0-9_\[\],]*$', s)
def variables(s):
"""Return a set of the variables in expression s.
>>> ppset(variables(F(x, A, y)))
set([x, y])
>>> ppset(variables(F(G(x), z)))
set([x, z])
>>> ppset(variables(expr('F(x, x) & G(x, y) & H(y, z) & R(A, z, z)')))
set([x, y, z])
"""
result = set([])
def walk(s):
if is_variable(s):
result.add(s)
else:
for arg in s.args:
walk(arg)
walk(s)
return result
def is_definite_clause(s):
"""returns True for exprs s of the form A & B & ... & C ==> D,
where all literals are positive. In clause form, this is
~A | ~B | ... | ~C | D, where exactly one clause is positive.
>>> is_definite_clause(expr('Farmer(Mac)'))
True
>>> is_definite_clause(expr('~Farmer(Mac)'))
False
>>> is_definite_clause(expr('(Farmer(f) & Rabbit(r)) ==> Hates(f, r)'))
True
>>> is_definite_clause(expr('(Farmer(f) & ~Rabbit(r)) ==> Hates(f, r)'))
False
>>> is_definite_clause(expr('(Farmer(f) | Rabbit(r)) ==> Hates(f, r)'))
False
"""
if is_symbol(s.op):
return True
elif s.op == '>>':
antecedent, consequent = s.args
return (is_symbol(consequent.op)
and every(lambda arg: is_symbol(arg.op), conjuncts(antecedent)))
else:
return False
def parse_definite_clause(s):
"Return the antecedents and the consequent of a definite clause."
assert is_definite_clause(s)
if is_symbol(s.op):
return [], s
else:
antecedent, consequent = s.args
return conjuncts(antecedent), consequent
## Useful constant Exprs used in examples and code:
class SpecialExpr(Expr):
"""Exists solely to allow the normal Expr constructor to assert valid symbol
syntax while still having some way to create the constants
TRUE, FALSE, ZERO, ONE, and, TWO
"""
def __init__(self, op, *args):
"Op is a string or number; args are Exprs (or are coerced to Exprs)."
assert isinstance(op, str) or (isnumber(op) and not args)
self.op = num_or_str(op)
self.args = tuple(map(expr, args)) ## Coerce args to Exprs
TRUE, FALSE = tuple(map(SpecialExpr, ['TRUE', 'FALSE']))
ZERO, ONE, TWO = tuple(map(SpecialExpr, [0, 1, 2]))
A, B, C, D, E, F, G, P, Q = tuple(map(Expr, 'ABCDEFGPQ'))
#______________________________________________________________________________
def prop_symbols(x):
"Return a list of all propositional symbols in x."
if not isinstance(x, Expr):
return []
elif is_prop_symbol(x.op):
return [x]
else:
return list(set(symbol for arg in x.args
for symbol in prop_symbols(arg)))
def pl_true(exp, model={}):
"""Return True if the propositional logic expression is true in the model,
and False if it is false. If the model does not specify the value for
every proposition, this may return None to indicate 'not obvious';
this may happen even when the expression is tautological."""
op, args = exp.op, exp.args
if exp == TRUE:
return True
elif exp == FALSE:
return False
elif is_prop_symbol(op):
return model.get(exp)
elif op == '~':
p = pl_true(args[0], model)
if p is None: return None
else: return not p
elif op == '|':
result = False
for arg in args:
p = pl_true(arg, model)
if p is True: return True
if p is None: result = None
return result
elif op == '&':
result = True
for arg in args:
p = pl_true(arg, model)
if p is False: return False
if p is None: result = None
return result
p, q = args
if op == '>>':
return pl_true(~p | q, model)
elif op == '<<':
return pl_true(p | ~q, model)
pt = pl_true(p, model)
if pt is None: return None
qt = pl_true(q, model)
if qt is None: return None
if op == '<=>':
return pt == qt
elif op == '^':
return pt != qt
else:
raise ValueError("illegal operator in logic expression" + str(exp))
#______________________________________________________________________________
## Convert to Conjunctive Normal Form (CNF)
def to_cnf(s):
"""Convert a propositional logical sentence s to conjunctive normal form.
That is, to the form ((A | ~B | ...) & (B | C | ...) & ...) [p. 253]
>>> to_cnf("~(B|C)")
(~B & ~C)
>>> to_cnf("B <=> (P1|P2)")
((~P1 | B) & (~P2 | B) & (P1 | P2 | ~B))
>>> to_cnf("a | (b & c) | d")
((b | a | d) & (c | a | d))
>>> to_cnf("A & (B | (D & E))")
(A & (D | B) & (E | B))
>>> to_cnf("A | (B | (C | (D & E)))")
((D | A | B | C) & (E | A | B | C))
"""
if isinstance(s, str): s = expr(s)
s = eliminate_implications(s) # Steps 1, 2 from p. 253
s = move_not_inwards(s) # Step 3
s = distribute_and_over_or(s) # Step 4
return s
def eliminate_implications(s):
"""Change >>, <<, and <=> into &, |, and ~. That is, return an Expr
that is equivalent to s, but has only &, |, and ~ as logical operators.
>>> eliminate_implications(A >> (~B << C))
((~B | ~C) | ~A)
>>> eliminate_implications(A ^ B)
((A & ~B) | (~A & B))
"""
if not s.args or is_symbol(s.op): return s ## (Atoms are unchanged.)
args = tuple(map(eliminate_implications, s.args))
a, b = args[0], args[-1]
if s.op == '>>':
return (b | ~a)
elif s.op == '<<':
return (a | ~b)
elif s.op == '<=>':
return (a | ~b) & (b | ~a)
elif s.op == '^':
assert len(args) == 2 ## TODO: relax this restriction
return (a & ~b) | (~a & b)
else:
assert s.op in ('&', '|', '~')
return Expr(s.op, *args)
def move_not_inwards(s):
"""Rewrite sentence s by moving negation sign inward.
>>> move_not_inwards(~(A | B))
(~A & ~B)
>>> move_not_inwards(~(A & B))
(~A | ~B)
>>> move_not_inwards(~(~(A | ~B) | ~~C))
((A | ~B) & ~C)
"""
if s.op == '~':
NOT = lambda b: move_not_inwards(~b)
a = s.args[0]
if a.op == '~': return move_not_inwards(a.args[0]) # ~~A ==> A
if a.op =='&': return associate('|', tuple(map(NOT, a.args)))
if a.op =='|': return associate('&', tuple(map(NOT, a.args)))
return s
elif is_symbol(s.op) or not s.args:
return s
else:
return Expr(s.op, *map(move_not_inwards, s.args))
def distribute_and_over_or(s):
"""Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
>>> distribute_and_over_or((A & B) | C)
((A | C) & (B | C))
"""
if s.op == '|':
s = associate('|', s.args)
if s.op != '|':
return distribute_and_over_or(s)
if len(s.args) == 0:
return FALSE
if len(s.args) == 1:
return distribute_and_over_or(s.args[0])
conj = find_if((lambda d: d.op == '&'), s.args)
if not conj:
return s
others = [a for a in s.args if a is not conj]
rest = associate('|', others)
return associate('&', [distribute_and_over_or(c|rest)
for c in conj.args])
elif s.op == '&':
return associate('&', map(distribute_and_over_or, s.args))
else:
return s
def associate(op, args):
"""Given an associative op, return an expression with the same
meaning as Expr(op, *args), but flattened -- that is, with nested
instances of the same op promoted to the top level.
>>> associate('&', [(A&B),(B|C),(B&C)])
(A & B & (B | C) & B & C)
>>> associate('|', [A|(B|(C|(A&B)))])
(A | B | C | (A & B))
"""
args = dissociate(op, args)
if len(args) == 0:
return _op_identity[op]
elif len(args) == 1:
return args[0]
else:
return Expr(op, *args)
_op_identity = {'&':TRUE, '|':FALSE, '+':ZERO, '*':ONE}
def conjoin(exprs, *args):
"""Given a list of expressions, returns their conjunction. Can be called either
with one argument that is a list of expressions, or with several arguments that
are each an expression.
If exprs is a singular expression or contains only one expression, return that
expression directly.
If exprs is an empty list, throw an error.
>>> conjoin([(A&B),(B|C),(B&C)])
(A & B & (B | C) & B & C)
>>> conjoin((A&B), (B|C), (B&C))
(A & B & (B | C) & B & C)
>>> conjoin([A])
A
"""
if args:
return conjoin([exprs] + list(args))
if (type(exprs) != list):
return exprs
assert len(exprs) > 0, "List to conjoin cannot be empty."
# It is a list. Enforce everything in the list is an Expr
for expr in exprs:
assert isinstance(expr, Expr), "An item in list to conjoin is not an Expr."
if (len(exprs) == 1):
return exprs[0]
return associate('&', exprs)
def disjoin(exprs, *args):
"""Given a list of expressions, returns their disjunction. Can be called either
with one argument that is a list of expressions, or with several arguments that
are each an expression.
If exprs is a singular expression or contains only one expression, return that
expression directly.
If exprs is an empty list, throw an error.
>>> disjoin([C, (A&B), (D&E)])
(C | (A & B) | (D & E))
>>> disjoin(C, (A&B), (D&E))
(C | (A & B) | (D & E))
>>> disjoin([C])
D
"""
if args:
return disjoin([exprs] + list(args))
if (type(exprs) != list):
return exprs
assert len(exprs) > 0, "List to disjoin cannot be empty."
# It is a list. Enforce everything in the list is an Expr
for expr in exprs:
assert isinstance(expr, Expr), "An item in list to disjoin is not an Expr."
if (len(exprs) == 1):
return exprs[0]
return associate('|', exprs)
def dissociate(op, args):
"""Given an associative op, return a flattened list result such
that Expr(op, *result) means the same as Expr(op, *args)."""
result = []
def collect(subargs):
for arg in subargs:
if arg.op == op: collect(arg.args)
else: result.append(arg)
collect(args)
return result
def conjuncts(s):
"""Return a list of the conjuncts in the sentence s.
>>> conjuncts(A & B)
[A, B]
>>> conjuncts(A | B)
[(A | B)]
"""
return dissociate('&', [s])
def disjuncts(s):
"""Return a list of the disjuncts in the sentence s.
>>> disjuncts(A | B)
[A, B]
>>> disjuncts(A & B)
[(A & B)]
"""
return dissociate('|', [s])
def is_valid_cnf(exp):
if not isinstance(exp, Expr):
print("Input is not an expression.")
return False
clauses = conjuncts(exp);
for c in clauses:
literals = disjuncts(c)
for lit in literals:
if len(lit.args) == 0:
symbol = lit;
elif len(lit.args) == 1:
symbol = lit.args[0]
if len(symbol.args) != 0:
print("Found a NOT outside of %s" % symbol)
return False
else:
print("Found %s where only a literal should be." % lit)
return False
symbol_str = str(symbol)
if not is_symbol(symbol_str):
print("%s is not a valid symbol." % symbol_str)
return False
elif not symbol_str[0].isupper():
print("The symbol %s must begin with an upper-case letter." % symbol_str)
return False
elif symbol_str == 'TRUE':
print("TRUE is not a valid symbol.")
return False
elif symbol_str == 'FALSE':
print("FALSE is not a valid symbol.")
return False
return True
#______________________________________________________________________________
# pycosat python wrapper around PicoSAT software.
# https://pypi.python.org/pypi/pycosat
def pycoSAT(expr):
"""Check satisfiability of an expression.
Given a CNF expression, returns a model that causes the input expression
to be true. Returns false if it cannot find a satisfible model.
A model is simply a dictionary with Expr symbols as keys with corresponding values
that are booleans: True if that symbol is true in the model and False if it is
false in the model.
Calls the pycosat solver: https://pypi.python.org/pypi/pycosat
>>> ppsubst(pycoSAT(A&~B))
{A: True, B: False}
>>> pycoSAT(P&~P)
False
"""
clauses = conjuncts(expr)
# Load symbol dictionary
symbol_dict = mapSymbolAndIndices(clauses)
# Convert Expr to integers
clauses_int = exprClausesToIndexClauses(clauses, symbol_dict)
model_int = pycosat.solve(clauses_int)
if model_int == 'UNSAT' or model_int == 'UNKNOWN':
return False
model = indexModelToExprModel(model_int, symbol_dict)
return model
def mapSymbolAndIndices(clauses):
"""
Create a dictionary that maps each clause to an integer index.
Uses a bidirectional dictionary {key1:value1, value1:key1, ...} for quick
access from symbol to index and index to symbol.
"""
symbol_dict = {}
idx = 1
for clause in clauses:
symbols = prop_symbols(clause)
for symbol in symbols:
if symbol not in symbol_dict:
symbol_dict[symbol] = idx
symbol_dict[idx] = symbol
idx +=1
return symbol_dict
def exprClausesToIndexClauses(clauses, symbol_dict):
"""
Convert each Expr in a list of clauses (CNF) into its corresponding index in
the symbol_dict (see mapSymbolAndIndices)
"""
clauses_int = []
for c in clauses:
c_disj = disjuncts(c)
c_int = []
for lit in c_disj:
# If literal is symbol, convert to index and add it.
# Otherwise it is ~symbol, in which case, we extract the symbol,
# convert it to index, and add the negative of the index
if len(lit.args) == 0:
c_int += [symbol_dict[lit]]
else:
c_int += [-symbol_dict[lit.args[0]]]
clauses_int += [c_int]
return clauses_int
def indexModelToExprModel(model_int, symbol_dict):
"""
Convert a model with indices into a model with the corresponding Expr in
the symbol_dict (see mapSymbolAndIndices)
>>>
"""
model = {}
for lit_int in model_int:
if lit_int > 0:
model[symbol_dict[lit_int]] = True
else:
model[symbol_dict[-lit_int]] = False
return model

622
logic/logicAgents.py Normal file
View File

@ -0,0 +1,622 @@
# logicAgents.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
This file contains all of the agents that can be selected to control Pacman. To
select an agent, use the '-p' option when running pacman.py. Arguments can be
passed to your agent using '-a'. For example, to load a LogicAgent that uses
logicPlan.positionLogicPlan, run the following command:
> python pacman.py -p LogicAgent -a fn=positionLogicPlan
Commands to invoke other planning methods can be found in the project
description.
You should NOT change code in this file
Good luck and happy planning!
"""
from game import Directions
from game import Agent
from game import Actions
from game import Grid
from graphicsUtils import *
import graphicsDisplay
import util
import time
import warnings
import logicPlan
import random
class GoWestAgent(Agent):
"An agent that goes West until it can't."
def getAction(self, state):
"The agent receives a GameState (defined in pacman.py)."
if Directions.WEST in state.getLegalPacmanActions():
return Directions.WEST
else:
return Directions.STOP
#######################################################
# This portion is written for you, but will only work #
# after you fill in parts of logicPlan.py #
#######################################################
class LogicAgent(Agent):
"""
This very general logic agent finds a path using a supplied planning
algorithm for a supplied planning problem, then returns actions to follow that
path.
As a default, this agent runs positionLogicPlan on a
PositionPlanningProblem to find location (1,1)
Options for fn include:
positionLogicPlan or plp
foodLogicPlan or flp
foodGhostLogicPlan or fglp
Note: You should NOT change any code in LogicAgent
"""
def __init__(self, fn='positionLogicPlan', prob='PositionPlanningProblem', plan_mod=logicPlan):
# Warning: some advanced Python magic is employed below to find the right functions and problems
# Get the planning function from the name and heuristic
if fn not in dir(plan_mod):
raise AttributeError(fn + ' is not a planning function in logicPlan.py.')
func = getattr(plan_mod, fn)
self.planningFunction = lambda x: func(x)
# Get the planning problem type from the name
if prob not in globals().keys() or not prob.endswith('Problem'):
raise AttributeError(prob + ' is not a planning problem type in logicAgents.py.')
self.planType = globals()[prob]
self.live_checking = False
print('[LogicAgent] using problem type ' + prob)
def registerInitialState(self, state):
"""
This is the first time that the agent sees the layout of the game
board. Here, we choose a path to the goal. In this phase, the agent
should compute the path to the goal and store it in a local variable.
All of the work is done in this method!
state: a GameState object (pacman.py)
"""
if self.planningFunction == None:
raise Exception("No planning function provided for LogicAgent")
starttime = time.time()
problem = self.planType(state) # Makes a new planning problem
self.actions = [] # In case planningFunction times out
self.actions = self.planningFunction(problem) # Find a path
if self.actions == None:
raise Exception('Studenct code supplied None instead of result')
totalCost = problem.getCostOfActions(self.actions)
print('Path found with total cost of %d in %.1f seconds' % (totalCost, time.time() - starttime))
# TODO Drop
if '_expanded' in dir(problem):
print('Nodes expanded: %d' % problem._expanded)
def getAction(self, state):
"""
Returns the next action in the path chosen earlier (in
registerInitialState). Return Directions.STOP if there is no further
action to take.
state: a GameState object (pacman.py)
"""
# import ipdb; ipdb.set_trace()
if 'actionIndex' not in dir(self): self.actionIndex = 0
i = self.actionIndex
self.actionIndex += 1
if i < len(self.actions):
return self.actions[i]
else:
print('Oh no! The Pacman agent created a plan that was too short!')
print()
return None
# return Directions.STOP
class CheckSatisfiabilityAgent(LogicAgent):
def __init__(self, fn='checkLocationSatisfiability', prob='LocMapProblem', plan_mod=logicPlan):
# Warning: some advanced Python magic is employed below to find the right functions and problems
# Get the planning function from the name and heuristic
if fn not in dir(plan_mod):
raise AttributeError(fn + ' is not a planning function in logicPlan.py.')
func = getattr(plan_mod, fn)
self.planningFunction = lambda x: func(*x)
# Get the planning problem type from the name
if prob not in globals().keys() or not prob.endswith('Problem'):
raise AttributeError(prob + ' is not a planning problem type in logicAgents.py.')
self.planType = globals()[prob]
print('[LogicAgent] using problem type ' + prob)
self.live_checking = False
def registerInitialState(self, state):
if self.planningFunction == None:
raise Exception("No planning function provided for LogicAgent")
starttime = time.time()
self.problem = self.planType(state) # Makes a new planning problem
def getAction(self, state):
return "EndGame"
class LocalizeMapAgent(LogicAgent):
"""Parent class for localization, mapping, and slam"""
def __init__(self, fn='positionLogicPlan', prob='LocMapProblem', plan_mod=logicPlan, display=None, scripted_actions=[]):
# Warning: some advanced Python magic is employed below to find the right functions and problems
# Get the planning function from the name and heuristic
if fn not in dir(plan_mod):
raise AttributeError(fn + ' is not a planning function in logicPlan.py.')
func = getattr(plan_mod, fn)
self.planningFunction = lambda x, y: func(x, y)
# Get the planning problem type from the name
if prob not in globals().keys() or not prob.endswith('Problem'):
raise AttributeError(prob + ' is not a planning problem type in logicAgents.py.')
self.planType = globals()[prob]
print('[LogicAgent] using problem type ' + prob)
self.visited_states = []
self.display = display
self.scripted_actions = scripted_actions
self.live_checking = True
def resetLocation(self):
self.visited_states = []
self.state = self.problem.getStartState()
self.visited_states.append(self.state)
def addNoOp_t0(self):
self.visited_states = [self.visited_states[0]] + list(self.visited_states)
self.actions.insert(0, "Stop")
def registerInitialState(self, state):
"""
This is the first time that the agent sees the layout of the game
board. Here, we choose a path to the goal. In this phase, the agent
should compute the path to the goal and store it in a local variable.
All of the work is done in this method!
state: a GameState object (pacman.py)
"""
if self.planningFunction == None:
raise Exception("No planning function provided for LogicAgent")
starttime = time.time()
problem = self.planType(state) # Makes a new planning problem
self.problem = problem
self.state = self.problem.getStartState()
self.actions = self.scripted_actions
self.resetLocation()
self.planning_fn_output = self.planningFunction(problem, self)
# self.addNoOp_t0()
def get_known_walls_non_walls_from_known_map(self, known_map):
# map is 1 for known wall, 0 for
if known_map == None:
raise Exception('Student code supplied None instead of a 2D known map')
known_walls = [[(True if entry==1 else False) for entry in row] for row in known_map]
known_non_walls = [[(True if entry==0 else False) for entry in row] for row in known_map]
return known_walls, known_non_walls
class LocalizationLogicAgent(LocalizeMapAgent):
def __init__(self, fn='localization', prob='LocalizationProblem', plan_mod=logicPlan, display=None, scripted_actions=[]):
super(LocalizationLogicAgent, self).__init__(fn, prob, plan_mod, display, scripted_actions)
self.num_timesteps = len(scripted_actions) if scripted_actions else 5
def getAction(self, state):
"""
Returns the next action in the path chosen earlier (in
registerInitialState). Return Directions.STOP if there is no further
action to take.
state: a GameState object (pacman.py)
"""
# import ipdb; ipdb.set_trace()
if 'actionIndex' not in dir(self): self.actionIndex = 0
i = self.actionIndex
self.actionIndex += 1
planning_fn_output = None
if i < self.num_timesteps:
proposed_action = self.actions[i]
planning_fn_output = next(self.planning_fn_output)
if planning_fn_output == None:
raise Exception('Studenct code supplied None instead of result')
if isinstance(self.display, graphicsDisplay.PacmanGraphics):
self.drawPossibleStates(planning_fn_output, direction=self.actions[i])
elif i < len(self.actions):
proposed_action = self.actions[i]
else:
proposed_action = "EndGame"
return proposed_action, planning_fn_output
def moveToNextState(self, action):
oldX, oldY = self.state
dx, dy = Actions.directionToVector(action)
x, y = int(oldX + dx), int(oldY + dy)
if self.problem.walls[x][y]:
raise AssertionError("Taking an action that goes into wall")
pass
else:
self.state = (x, y)
self.visited_states.append(self.state)
def getPercepts(self):
x, y = self.state
north_iswall = self.problem.walls[x][y+1]
south_iswall = self.problem.walls[x][y-1]
east_iswall = self.problem.walls[x+1][y]
west_iswall = self.problem.walls[x-1][y]
return [north_iswall, south_iswall, east_iswall, west_iswall]
def getValidActions(self):
x, y = self.state
actions = []
if not self.problem.walls[x][y+1]: actions.append('North')
if not self.problem.walls[x][y-1]: actions.append('South')
if not self.problem.walls[x+1][y]: actions.append('East')
if not self.problem.walls[x-1][y]: actions.append('West')
return actions
def drawPossibleStates(self, possibleLocations=None, direction="North", pacman_position=None):
import __main__
self.display.clearExpandedCells() # Erase previous colors
self.display.colorCircleCells(possibleLocations, direction=direction, pacman_position=pacman_position)
class MappingLogicAgent(LocalizeMapAgent):
def __init__(self, fn='mapping', prob='MappingProblem', plan_mod=logicPlan, display=None, scripted_actions=[]):
super(MappingLogicAgent, self).__init__(fn, prob, plan_mod, display, scripted_actions)
self.num_timesteps = len(scripted_actions) if scripted_actions else 10
def getAction(self, state):
"""
Returns the next action in the path chosen earlier (in
registerInitialState). Return Directions.STOP if there is no further
action to take.
state: a GameState object (pacman.py)
"""
if 'actionIndex' not in dir(self): self.actionIndex = 0
i = self.actionIndex
self.actionIndex += 1
planning_fn_output = None
if i < self.num_timesteps:
proposed_action = self.actions[i]
planning_fn_output = next(self.planning_fn_output)
if isinstance(self.display, graphicsDisplay.PacmanGraphics):
self.drawWallBeliefs(planning_fn_output, self.actions[i], self.visited_states[:i])
elif i < len(self.actions):
proposed_action = self.actions[i]
else:
proposed_action = "EndGame"
return proposed_action, planning_fn_output
def moveToNextState(self, action):
oldX, oldY = self.state
dx, dy = Actions.directionToVector(action)
x, y = int(oldX + dx), int(oldY + dy)
if self.problem.walls[x][y]:
raise AssertionError("Taking an action that goes into wall")
pass
else:
self.state = (x, y)
self.visited_states.append(self.state)
def getPercepts(self):
x, y = self.state
north_iswall = self.problem.walls[x][y+1]
south_iswall = self.problem.walls[x][y-1]
east_iswall = self.problem.walls[x+1][y]
west_iswall = self.problem.walls[x-1][y]
return [north_iswall, south_iswall, east_iswall, west_iswall]
def getValidActions(self):
x, y = self.state
actions = []
if not self.problem.walls[x][y+1]: actions.append('North')
if not self.problem.walls[x][y-1]: actions.append('South')
if not self.problem.walls[x+1][y]: actions.append('East')
if not self.problem.walls[x-1][y]: actions.append('West')
return actions
def drawWallBeliefs(self, known_map=None, direction="North", visited_states_to_render=[]):
import random
import __main__
from graphicsUtils import draw_background, refresh
known_walls, known_non_walls = self.get_known_walls_non_walls_from_known_map(known_map)
wallGrid = Grid(self.problem.walls.width, self.problem.walls.height, initialValue=False)
wallGrid.data = known_walls
allTrueWallGrid = Grid(self.problem.walls.width, self.problem.walls.height, initialValue=True)
self.display.clearExpandedCells() # Erase previous colors
self.display.drawWalls(wallGrid, formatColor(.9,0,0), allTrueWallGrid)
refresh()
class SLAMLogicAgent(LocalizeMapAgent):
def __init__(self, fn='slam', prob='SLAMProblem', plan_mod=logicPlan, display=None, scripted_actions=[]):
super(SLAMLogicAgent, self).__init__(fn, prob, plan_mod, display, scripted_actions)
self.scripted_actions = scripted_actions
self.num_timesteps = len(self.scripted_actions) if self.scripted_actions else 10
self.live_checking = True
def getAction(self, state):
"""
Returns the next action in the path chosen earlier (in
registerInitialState). Return Directions.STOP if there is no further
action to take.
state: a GameState object (pacman.py)
"""
# import ipdb; ipdb.set_trace()
if 'actionIndex' not in dir(self): self.actionIndex = 0
i = self.actionIndex
self.actionIndex += 1
pacman_loc = self.visited_states[i]
planning_fn_output = None
if i < self.num_timesteps:
proposed_action = self.actions[i]
planning_fn_output = next(self.planning_fn_output)
if planning_fn_output == None:
raise Exception('Studenct code supplied None instead of result')
if isinstance(self.display, graphicsDisplay.PacmanGraphics):
self.drawWallandPositionBeliefs(
known_map=planning_fn_output[0],
possibleLocations=planning_fn_output[1],
direction=self.actions[i])
elif i < len(self.actions):
proposed_action = self.actions[i]
else:
proposed_action = "EndGame"
# SLAM needs to handle illegal actions
if proposed_action not in self.getValidActions(pacman_loc) and proposed_action not in ["Stop", "EndGame"]:
proposed_action = "Stop"
return proposed_action, planning_fn_output
def moveToNextState(self, action):
oldX, oldY = self.state
dx, dy = Actions.directionToVector(action)
x, y = int(oldX + dx), int(oldY + dy)
if self.problem.walls[x][y]:
# raise AssertionError("Taking an action that goes into wall")
pass
else:
self.state = (x, y)
self.visited_states.append(self.state)
def getPercepts(self):
x, y = self.state
north_iswall = self.problem.walls[x][y+1]
south_iswall = self.problem.walls[x][y-1]
east_iswall = self.problem.walls[x+1][y]
west_iswall = self.problem.walls[x-1][y]
num_adj_walls = sum([north_iswall, south_iswall, east_iswall, west_iswall])
# percept format: [adj_to_>=1_wall, adj_to_>=2_wall, adj_to_>=3_wall]
percept = [num_adj_walls >= i for i in range(1, 4)]
return percept
def getValidActions(self, state=None):
if not state:
state = self.state
x, y = state
actions = []
if not self.problem.walls[x][y+1]: actions.append('North')
if not self.problem.walls[x][y-1]: actions.append('South')
if not self.problem.walls[x+1][y]: actions.append('East')
if not self.problem.walls[x-1][y]: actions.append('West')
return actions
def drawWallandPositionBeliefs(self, known_map=None, possibleLocations=None,
direction="North", visited_states_to_render=[], pacman_position=None):
import random
import __main__
from graphicsUtils import draw_background, refresh
known_walls, known_non_walls = self.get_known_walls_non_walls_from_known_map(known_map)
wallGrid = Grid(self.problem.walls.width, self.problem.walls.height, initialValue=False)
wallGrid.data = known_walls
allTrueWallGrid = Grid(self.problem.walls.width, self.problem.walls.height, initialValue=True)
# Recover list of non-wall coords:
non_wall_coords = []
for x in range(len(known_non_walls)):
for y in range(len(known_non_walls[x])):
if known_non_walls[x][y] == 1:
non_wall_coords.append((x, y))
self.display.clearExpandedCells() # Erase previous colors
self.display.drawWalls(wallGrid, formatColor(.9,0,0), allTrueWallGrid)
self.display.colorCircleSquareCells(possibleLocations, square_cells=non_wall_coords, direction=direction, pacman_position=pacman_position)
refresh()
class PositionPlanningProblem(logicPlan.PlanningProblem):
"""
A planning problem defines the state space, start state, goal test, successor
function and cost function. This planning problem can be used to find paths
to a particular point on the pacman board.
The state space consists of (x,y) positions in a pacman game.
Note: this planning problem is fully specified; you should NOT change it.
"""
def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True):
"""
Stores the start and goal.
gameState: A GameState object (pacman.py)
costFn: A function from a planning state (tuple) to a non-negative number
goal: A position in the gameState
"""
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
if start != None: self.startState = start
self.goal = goal
self.costFn = costFn
self.visualize = visualize
if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)):
print('Warning: this does not look like a regular position planning maze')
# For display purposes
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
def getStartState(self):
return self.startState
def getGoalState(self):
return self.goal
def getCostOfActions(self, actions):
"""
Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999.
This is included in the logic project solely for autograding purposes.
You should not be calling it.
"""
if actions == None: return 999999
x,y= self.getStartState()
cost = 0
for action in actions:
# Check figure out the next state and see whether it's legal
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]: return 999999
cost += self.costFn((x,y))
return cost
def getWidth(self):
"""
Returns the width of the playable grid (does not include the external wall)
Possible x positions for agents will be in range [1,width]
"""
return self.walls.width-2
def getHeight(self):
"""
Returns the height of the playable grid (does not include the external wall)
Possible y positions for agents will be in range [1,height]
"""
return self.walls.height-2
def manhattanHeuristic(position, problem, info={}):
"The Manhattan distance heuristic for a PositionPlanningProblem"
xy1 = position
xy2 = problem.goal
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
def euclideanHeuristic(position, problem, info={}):
"The Euclidean distance heuristic for a PositionPlanningProblem"
xy1 = position
xy2 = problem.goal
return ( (xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2 ) ** 0.5
class LocMapProblem:
"""Parent class for Localization, Mapping, and SLAM."""
def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True):
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
if start != None: self.startState = start
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
def getStartState(self):
return self.startState
def getWidth(self):
"""
Returns the width of the playable grid (does not include the external wall)
Possible x positions for agents will be in range [1,width]
"""
return self.walls.width-2
def getHeight(self):
"""
Returns the height of the playable grid (does not include the external wall)
Possible y positions for agents will be in range [1,height]
"""
return self.walls.height-2
class LocalizationProblem(LocMapProblem):
pass
class MappingProblem(LocMapProblem):
pass
class SLAMProblem(LocMapProblem):
pass
class FoodPlanningProblem:
"""
A planning problem associated with finding the a path that collects all of the
food (dots) in a Pacman game.
A planning state in this problem is a tuple ( pacmanPosition, foodGrid ) where
pacmanPosition: a tuple (x,y) of integers specifying Pacman's position
foodGrid: a Grid (see game.py) of either True or False, specifying remaining food
"""
def __init__(self, startingGameState):
self.start = (startingGameState.getPacmanPosition(), startingGameState.getFood())
self.walls = startingGameState.getWalls()
self.startingGameState = startingGameState
self._expanded = 0 # DO NOT CHANGE
self.heuristicInfo = {} # A dictionary for the heuristic to store information
def getStartState(self):
return self.start
def getCostOfActions(self, actions):
"""Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999.
This is included in the logic project solely for autograding purposes.
You should not be calling it.
"""
x,y= self.getStartState()[0]
cost = 0
for action in actions:
# figure out the next state and see whether it's legal
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]:
return 999999
cost += 1
return cost
def getWidth(self):
"""
Returns the width of the playable grid (does not include the external wall)
Possible x positions for agents will be in range [1,width]
"""
return self.walls.width-2
def getHeight(self):
"""
Returns the height of the playable grid (does not include the external wall)
Possible y positions for agents will be in range [1,height]
"""
return self.walls.height-2

648
logic/logicPlan.py Normal file
View File

@ -0,0 +1,648 @@
# logicPlan.py
# ------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
In logicPlan.py, you will implement logic planning methods which are called by
Pacman agents (in logicAgents.py).
"""
from typing import Dict, List, Tuple, Callable, Generator, Any
import util
import sys
import logic
import game
from logic import conjoin, disjoin
from logic import PropSymbolExpr, Expr, to_cnf, pycoSAT, parseExpr, pl_true
import itertools
import copy
pacman_str = 'P'
food_str = 'FOOD'
wall_str = 'WALL'
pacman_wall_str = pacman_str + wall_str
DIRECTIONS = ['North', 'South', 'East', 'West']
blocked_str_map = dict([(direction, (direction + "_blocked").upper()) for direction in DIRECTIONS])
geq_num_adj_wall_str_map = dict([(num, "GEQ_{}_adj_walls".format(num)) for num in range(1, 4)])
DIR_TO_DXDY_MAP = {'North':(0, 1), 'South':(0, -1), 'East':(1, 0), 'West':(-1, 0)}
#______________________________________________________________________________
# QUESTION 1
def sentence1() -> Expr:
"""Returns a Expr instance that encodes that the following expressions are all true.
A or B
(not A) if and only if ((not B) or C)
(not A) or (not B) or C
"""
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
def sentence2() -> Expr:
"""Returns a Expr instance that encodes that the following expressions are all true.
C if and only if (B or D)
A implies ((not B) and (not D))
(not (B and (not C))) implies A
(not D) implies C
"""
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
def sentence3() -> Expr:
"""Using the symbols PacmanAlive_1 PacmanAlive_0, PacmanBorn_0, and PacmanKilled_0,
created using the PropSymbolExpr constructor, return a PropSymbolExpr
instance that encodes the following English sentences (in this order):
Pacman is alive at time 1 if and only if Pacman was alive at time 0 and it was
not killed at time 0 or it was not alive at time 0 and it was born at time 0.
Pacman cannot both be alive at time 0 and be born at time 0.
Pacman is born at time 0.
"""
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
def findModel(sentence: Expr) -> Dict[Expr, bool]:
"""Given a propositional logic sentence (i.e. a Expr instance), returns a satisfying
model if one exists. Otherwise, returns False.
"""
cnf_sentence = to_cnf(sentence)
return pycoSAT(cnf_sentence)
def findModelUnderstandingCheck() -> Dict[Expr, bool]:
"""Returns the result of findModel(Expr('a')) if lower cased expressions were allowed.
You should not use findModel or Expr in this method.
"""
a = Expr('A')
"*** BEGIN YOUR CODE HERE ***"
print("a.__dict__ is:", a.__dict__) # might be helpful for getting ideas
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
def entails(premise: Expr, conclusion: Expr) -> bool:
"""Returns True if the premise entails the conclusion and False otherwise.
"""
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
def plTrueInverse(assignments: Dict[Expr, bool], inverse_statement: Expr) -> bool:
"""Returns True if the (not inverse_statement) is True given assignments and False otherwise.
pl_true may be useful here; see logic.py for its description.
"""
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
#______________________________________________________________________________
# QUESTION 2
def atLeastOne(literals: List[Expr]) -> Expr:
"""
Given a list of Expr literals (i.e. in the form A or ~A), return a single
Expr instance in CNF (conjunctive normal form) that represents the logic
that at least one of the literals ist is true.
>>> A = PropSymbolExpr('A');
>>> B = PropSymbolExpr('B');
>>> symbols = [A, B]
>>> atleast1 = atLeastOne(symbols)
>>> model1 = {A:False, B:False}
>>> print(pl_true(atleast1,model1))
False
>>> model2 = {A:False, B:True}
>>> print(pl_true(atleast1,model2))
True
>>> model3 = {A:True, B:True}
>>> print(pl_true(atleast1,model2))
True
"""
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
def atMostOne(literals: List[Expr]) -> Expr:
"""
Given a list of Expr literals, return a single Expr instance in
CNF (conjunctive normal form) that represents the logic that at most one of
the expressions in the list is true.
itertools.combinations may be useful here.
"""
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
def exactlyOne(literals: List[Expr]) -> Expr:
"""
Given a list of Expr literals, return a single Expr instance in
CNF (conjunctive normal form)that represents the logic that exactly one of
the expressions in the list is true.
"""
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
#______________________________________________________________________________
# QUESTION 3
def pacmanSuccessorAxiomSingle(x: int, y: int, time: int, walls_grid: List[List[bool]]=None) -> Expr:
"""
Successor state axiom for state (x,y,t) (from t-1), given the board (as a
grid representing the wall locations).
Current <==> (previous position at time t-1) & (took action to move to x, y)
Available actions are ['North', 'East', 'South', 'West']
Note that STOP is not an available action.
"""
now, last = time, time - 1
possible_causes: List[Expr] = [] # enumerate all possible causes for P[x,y]_t
# the if statements give a small performance boost and are required for q4 and q5 correctness
if walls_grid[x][y+1] != 1:
possible_causes.append( PropSymbolExpr(pacman_str, x, y+1, time=last)
& PropSymbolExpr('South', time=last))
if walls_grid[x][y-1] != 1:
possible_causes.append( PropSymbolExpr(pacman_str, x, y-1, time=last)
& PropSymbolExpr('North', time=last))
if walls_grid[x+1][y] != 1:
possible_causes.append( PropSymbolExpr(pacman_str, x+1, y, time=last)
& PropSymbolExpr('West', time=last))
if walls_grid[x-1][y] != 1:
possible_causes.append( PropSymbolExpr(pacman_str, x-1, y, time=last)
& PropSymbolExpr('East', time=last))
if not possible_causes:
return None
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
def SLAMSuccessorAxiomSingle(x: int, y: int, time: int, walls_grid: List[List[bool]]) -> Expr:
"""
Similar to `pacmanSuccessorStateAxioms` but accounts for illegal actions
where the pacman might not move timestep to timestep.
Available actions are ['North', 'East', 'South', 'West']
"""
now, last = time, time - 1
moved_causes: List[Expr] = [] # enumerate all possible causes for P[x,y]_t, assuming moved to having moved
if walls_grid[x][y+1] != 1:
moved_causes.append( PropSymbolExpr(pacman_str, x, y+1, time=last)
& PropSymbolExpr('South', time=last))
if walls_grid[x][y-1] != 1:
moved_causes.append( PropSymbolExpr(pacman_str, x, y-1, time=last)
& PropSymbolExpr('North', time=last))
if walls_grid[x+1][y] != 1:
moved_causes.append( PropSymbolExpr(pacman_str, x+1, y, time=last)
& PropSymbolExpr('West', time=last))
if walls_grid[x-1][y] != 1:
moved_causes.append( PropSymbolExpr(pacman_str, x-1, y, time=last)
& PropSymbolExpr('East', time=last))
if not moved_causes:
return None
moved_causes_sent: Expr = conjoin([~PropSymbolExpr(pacman_str, x, y, time=last) , ~PropSymbolExpr(wall_str, x, y), disjoin(moved_causes)])
failed_move_causes: List[Expr] = [] # using merged variables, improves speed significantly
auxilary_expression_definitions: List[Expr] = []
for direction in DIRECTIONS:
dx, dy = DIR_TO_DXDY_MAP[direction]
wall_dir_clause = PropSymbolExpr(wall_str, x + dx, y + dy) & PropSymbolExpr(direction, time=last)
wall_dir_combined_literal = PropSymbolExpr(wall_str + direction, x + dx, y + dy, time=last)
failed_move_causes.append(wall_dir_combined_literal)
auxilary_expression_definitions.append(wall_dir_combined_literal % wall_dir_clause)
failed_move_causes_sent: Expr = conjoin([
PropSymbolExpr(pacman_str, x, y, time=last),
disjoin(failed_move_causes)])
return conjoin([PropSymbolExpr(pacman_str, x, y, time=now) % disjoin([moved_causes_sent, failed_move_causes_sent])] + auxilary_expression_definitions)
def pacphysicsAxioms(t: int, all_coords: List[Tuple], non_outer_wall_coords: List[Tuple], walls_grid: List[List] = None, sensorModel: Callable = None, successorAxioms: Callable = None) -> Expr:
"""
Given:
t: timestep
all_coords: list of (x, y) coordinates of the entire problem
non_outer_wall_coords: list of (x, y) coordinates of the entire problem,
excluding the outer border (these are the actual squares pacman can
possibly be in)
walls_grid: 2D array of either -1/0/1 or T/F. Used only for successorAxioms.
Do NOT use this when making possible locations for pacman to be in.
sensorModel(t, non_outer_wall_coords) -> Expr: function that generates
the sensor model axioms. If None, it's not provided, so shouldn't be run.
successorAxioms(t, walls_grid, non_outer_wall_coords) -> Expr: function that generates
the sensor model axioms. If None, it's not provided, so shouldn't be run.
Return a logic sentence containing all of the following:
- for all (x, y) in all_coords:
If a wall is at (x, y) --> Pacman is not at (x, y)
- Pacman is at exactly one of the squares at timestep t.
- Pacman takes exactly one action at timestep t.
- Results of calling sensorModel(...), unless None.
- Results of calling successorAxioms(...), describing how Pacman can end in various
locations on this time step. Consider edge cases. Don't call if None.
"""
pacphysics_sentences = []
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
return conjoin(pacphysics_sentences)
def checkLocationSatisfiability(x1_y1: Tuple[int, int], x0_y0: Tuple[int, int], action0, action1, problem):
"""
Given:
- x1_y1 = (x1, y1), a potential location at time t = 1
- x0_y0 = (x0, y0), Pacman's location at time t = 0
- action0 = one of the four items in DIRECTIONS, Pacman's action at time t = 0
- action1 = to ensure match with autograder solution
- problem = an instance of logicAgents.LocMapProblem
Note:
- there's no sensorModel because we know everything about the world
- the successorAxioms should be allLegalSuccessorAxioms where needed
Return:
- a model where Pacman is at (x1, y1) at time t = 1
- a model where Pacman is not at (x1, y1) at time t = 1
"""
walls_grid = problem.walls
walls_list = walls_grid.asList()
all_coords = list(itertools.product(range(problem.getWidth()+2), range(problem.getHeight()+2)))
non_outer_wall_coords = list(itertools.product(range(1, problem.getWidth()+1), range(1, problem.getHeight()+1)))
KB = []
x0, y0 = x0_y0
x1, y1 = x1_y1
# We know which coords are walls:
map_sent = [PropSymbolExpr(wall_str, x, y) for x, y in walls_list]
KB.append(conjoin(map_sent))
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
#______________________________________________________________________________
# QUESTION 4
def positionLogicPlan(problem) -> List:
"""
Given an instance of a PositionPlanningProblem, return a list of actions that lead to the goal.
Available actions are ['North', 'East', 'South', 'West']
Note that STOP is not an available action.
Overview: add knowledge incrementally, and query for a model each timestep. Do NOT use pacphysicsAxioms.
"""
walls_grid = problem.walls
width, height = problem.getWidth(), problem.getHeight()
walls_list = walls_grid.asList()
x0, y0 = problem.startState
xg, yg = problem.goal
# Get lists of possible locations (i.e. without walls) and possible actions
all_coords = list(itertools.product(range(width + 2),
range(height + 2)))
non_wall_coords = [loc for loc in all_coords if loc not in walls_list]
actions = [ 'North', 'South', 'East', 'West' ]
KB = []
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
#______________________________________________________________________________
# QUESTION 5
def foodLogicPlan(problem) -> List:
"""
Given an instance of a FoodPlanningProblem, return a list of actions that help Pacman
eat all of the food.
Available actions are ['North', 'East', 'South', 'West']
Note that STOP is not an available action.
Overview: add knowledge incrementally, and query for a model each timestep. Do NOT use pacphysicsAxioms.
"""
walls = problem.walls
width, height = problem.getWidth(), problem.getHeight()
walls_list = walls.asList()
(x0, y0), food = problem.start
food = food.asList()
# Get lists of possible locations (i.e. without walls) and possible actions
all_coords = list(itertools.product(range(width + 2), range(height + 2)))
non_wall_coords = [loc for loc in all_coords if loc not in walls_list]
actions = [ 'North', 'South', 'East', 'West' ]
KB = []
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
"*** END YOUR CODE HERE ***"
#______________________________________________________________________________
# QUESTION 6
def localization(problem, agent) -> Generator:
'''
problem: a LocalizationProblem instance
agent: a LocalizationLogicAgent instance
'''
walls_grid = problem.walls
walls_list = walls_grid.asList()
all_coords = list(itertools.product(range(problem.getWidth()+2), range(problem.getHeight()+2)))
non_outer_wall_coords = list(itertools.product(range(1, problem.getWidth()+1), range(1, problem.getHeight()+1)))
KB = []
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
for t in range(agent.num_timesteps):
"*** END YOUR CODE HERE ***"
yield possible_locations
#______________________________________________________________________________
# QUESTION 7
def mapping(problem, agent) -> Generator:
'''
problem: a MappingProblem instance
agent: a MappingLogicAgent instance
'''
pac_x_0, pac_y_0 = problem.startState
KB = []
all_coords = list(itertools.product(range(problem.getWidth()+2), range(problem.getHeight()+2)))
non_outer_wall_coords = list(itertools.product(range(1, problem.getWidth()+1), range(1, problem.getHeight()+1)))
# map describes what we know, for GUI rendering purposes. -1 is unknown, 0 is open, 1 is wall
known_map = [[-1 for y in range(problem.getHeight()+2)] for x in range(problem.getWidth()+2)]
# Pacman knows that the outer border of squares are all walls
outer_wall_sent = []
for x, y in all_coords:
if ((x == 0 or x == problem.getWidth() + 1)
or (y == 0 or y == problem.getHeight() + 1)):
known_map[x][y] = 1
outer_wall_sent.append(PropSymbolExpr(wall_str, x, y))
KB.append(conjoin(outer_wall_sent))
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
for t in range(agent.num_timesteps):
"*** END YOUR CODE HERE ***"
yield known_map
#______________________________________________________________________________
# QUESTION 8
def slam(problem, agent) -> Generator:
'''
problem: a SLAMProblem instance
agent: a SLAMLogicAgent instance
'''
pac_x_0, pac_y_0 = problem.startState
KB = []
all_coords = list(itertools.product(range(problem.getWidth()+2), range(problem.getHeight()+2)))
non_outer_wall_coords = list(itertools.product(range(1, problem.getWidth()+1), range(1, problem.getHeight()+1)))
# map describes what we know, for GUI rendering purposes. -1 is unknown, 0 is open, 1 is wall
known_map = [[-1 for y in range(problem.getHeight()+2)] for x in range(problem.getWidth()+2)]
# We know that the outer_coords are all walls.
outer_wall_sent = []
for x, y in all_coords:
if ((x == 0 or x == problem.getWidth() + 1)
or (y == 0 or y == problem.getHeight() + 1)):
known_map[x][y] = 1
outer_wall_sent.append(PropSymbolExpr(wall_str, x, y))
KB.append(conjoin(outer_wall_sent))
"*** BEGIN YOUR CODE HERE ***"
util.raiseNotDefined()
for t in range(agent.num_timesteps):
"*** END YOUR CODE HERE ***"
yield (known_map, possible_locations)
# Abbreviations
plp = positionLogicPlan
loc = localization
mp = mapping
flp = foodLogicPlan
# Sometimes the logic module uses pretty deep recursion on long expressions
sys.setrecursionlimit(100000)
#______________________________________________________________________________
# Important expression generating functions, useful to read for understanding of this project.
def sensorAxioms(t: int, non_outer_wall_coords: List[Tuple[int, int]]) -> Expr:
all_percept_exprs = []
combo_var_def_exprs = []
for direction in DIRECTIONS:
percept_exprs = []
dx, dy = DIR_TO_DXDY_MAP[direction]
for x, y in non_outer_wall_coords:
combo_var = PropSymbolExpr(pacman_wall_str, x, y, x + dx, y + dy, time=t)
percept_exprs.append(combo_var)
combo_var_def_exprs.append(combo_var % (
PropSymbolExpr(pacman_str, x, y, time=t) & PropSymbolExpr(wall_str, x + dx, y + dy)))
percept_unit_clause = PropSymbolExpr(blocked_str_map[direction], time = t)
all_percept_exprs.append(percept_unit_clause % disjoin(percept_exprs))
return conjoin(all_percept_exprs + combo_var_def_exprs)
def fourBitPerceptRules(t: int, percepts: List) -> Expr:
"""
Localization and Mapping both use the 4 bit sensor, which tells us True/False whether
a wall is to pacman's north, south, east, and west.
"""
assert isinstance(percepts, list), "Percepts must be a list."
assert len(percepts) == 4, "Percepts must be a length 4 list."
percept_unit_clauses = []
for wall_present, direction in zip(percepts, DIRECTIONS):
percept_unit_clause = PropSymbolExpr(blocked_str_map[direction], time=t)
if not wall_present:
percept_unit_clause = ~PropSymbolExpr(blocked_str_map[direction], time=t)
percept_unit_clauses.append(percept_unit_clause) # The actual sensor readings
return conjoin(percept_unit_clauses)
def numAdjWallsPerceptRules(t: int, percepts: List) -> Expr:
"""
SLAM uses a weaker numAdjWallsPerceptRules sensor, which tells us how many walls pacman is adjacent to
in its four directions.
000 = 0 adj walls.
100 = 1 adj wall.
110 = 2 adj walls.
111 = 3 adj walls.
"""
assert isinstance(percepts, list), "Percepts must be a list."
assert len(percepts) == 3, "Percepts must be a length 3 list."
percept_unit_clauses = []
for i, percept in enumerate(percepts):
n = i + 1
percept_literal_n = PropSymbolExpr(geq_num_adj_wall_str_map[n], time=t)
if not percept:
percept_literal_n = ~percept_literal_n
percept_unit_clauses.append(percept_literal_n)
return conjoin(percept_unit_clauses)
def SLAMSensorAxioms(t: int, non_outer_wall_coords: List[Tuple[int, int]]) -> Expr:
all_percept_exprs = []
combo_var_def_exprs = []
for direction in DIRECTIONS:
percept_exprs = []
dx, dy = DIR_TO_DXDY_MAP[direction]
for x, y in non_outer_wall_coords:
combo_var = PropSymbolExpr(pacman_wall_str, x, y, x + dx, y + dy, time=t)
percept_exprs.append(combo_var)
combo_var_def_exprs.append(combo_var % (PropSymbolExpr(pacman_str, x, y, time=t) & PropSymbolExpr(wall_str, x + dx, y + dy)))
blocked_dir_clause = PropSymbolExpr(blocked_str_map[direction], time=t)
all_percept_exprs.append(blocked_dir_clause % disjoin(percept_exprs))
percept_to_blocked_sent = []
for n in range(1, 4):
wall_combos_size_n = itertools.combinations(blocked_str_map.values(), n)
n_walls_blocked_sent = disjoin([
conjoin([PropSymbolExpr(blocked_str, time=t) for blocked_str in wall_combo])
for wall_combo in wall_combos_size_n])
# n_walls_blocked_sent is of form: (N & S) | (N & E) | ...
percept_to_blocked_sent.append(
PropSymbolExpr(geq_num_adj_wall_str_map[n], time=t) % n_walls_blocked_sent)
return conjoin(all_percept_exprs + combo_var_def_exprs + percept_to_blocked_sent)
def allLegalSuccessorAxioms(t: int, walls_grid: List[List], non_outer_wall_coords: List[Tuple[int, int]]) -> Expr:
"""walls_grid can be a 2D array of ints or bools."""
all_xy_succ_axioms = []
for x, y in non_outer_wall_coords:
xy_succ_axiom = pacmanSuccessorAxiomSingle(
x, y, t, walls_grid)
if xy_succ_axiom:
all_xy_succ_axioms.append(xy_succ_axiom)
return conjoin(all_xy_succ_axioms)
def SLAMSuccessorAxioms(t: int, walls_grid: List[List], non_outer_wall_coords: List[Tuple[int, int]]) -> Expr:
"""walls_grid can be a 2D array of ints or bools."""
all_xy_succ_axioms = []
for x, y in non_outer_wall_coords:
xy_succ_axiom = SLAMSuccessorAxiomSingle(
x, y, t, walls_grid)
if xy_succ_axiom:
all_xy_succ_axioms.append(xy_succ_axiom)
return conjoin(all_xy_succ_axioms)
#______________________________________________________________________________
# Various useful functions, are not needed for completing the project but may be useful for debugging
def modelToString(model: Dict[Expr, bool]) -> str:
"""Converts the model to a string for printing purposes. The keys of a model are
sorted before converting the model to a string.
model: Either a boolean False or a dictionary of Expr symbols (keys)
and a corresponding assignment of True or False (values). This model is the output of
a call to pycoSAT.
"""
if model == False:
return "False"
else:
# Dictionary
modelList = sorted(model.items(), key=lambda item: str(item[0]))
return str(modelList)
def extractActionSequence(model: Dict[Expr, bool], actions: List) -> List:
"""
Convert a model in to an ordered list of actions.
model: Propositional logic model stored as a dictionary with keys being
the symbol strings and values being Boolean: True or False
Example:
>>> model = {"North[2]":True, "P[3,4,0]":True, "P[3,3,0]":False, "West[0]":True, "GhostScary":True, "West[2]":False, "South[1]":True, "East[0]":False}
>>> actions = ['North', 'South', 'East', 'West']
>>> plan = extractActionSequence(model, actions)
>>> print(plan)
['West', 'South', 'North']
"""
plan = [None for _ in range(len(model))]
for sym, val in model.items():
parsed = parseExpr(sym)
if type(parsed) == tuple and parsed[0] in actions and val:
action, _, time = parsed
plan[time] = action
#return list(filter(lambda x: x is not None, plan))
return [x for x in plan if x is not None]
# Helpful Debug Method
def visualizeCoords(coords_list, problem) -> None:
wallGrid = game.Grid(problem.walls.width, problem.walls.height, initialValue=False)
for (x, y) in itertools.product(range(problem.getWidth()+2), range(problem.getHeight()+2)):
if (x, y) in coords_list:
wallGrid.data[x][y] = True
print(wallGrid)
# Helpful Debug Method
def visualizeBoolArray(bool_arr, problem) -> None:
wallGrid = game.Grid(problem.walls.width, problem.walls.height, initialValue=False)
wallGrid.data = copy.deepcopy(bool_arr)
print(wallGrid)
class PlanningProblem:
"""
This class outlines the structure of a planning problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the planning problem.
"""
util.raiseNotDefined()
def getGhostStartStates(self):
"""
Returns a list containing the start state for each ghost.
Only used in problems that use ghosts (FoodGhostPlanningProblem)
"""
util.raiseNotDefined()
def getGoalState(self):
"""
Returns goal state for problem. Note only defined for problems that have
a unique goal state such as PositionPlanningProblem
"""
util.raiseNotDefined()

View File

@ -0,0 +1,767 @@
# logic_planTestClasses.py
# ------------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import testClasses
import textDisplay
import graphicsDisplay
import layout
import pacman
import logicAgents
from logicPlan import PlanningProblem
import logicPlan
import itertools
# Simple test case which evals an arbitrary piece of python code.
# The test is correct if the output of the code given the student's
# solution matches that of the instructor's.
class EvalTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(EvalTest, self).__init__(question, testDict)
self.preamble = compile(testDict.get('preamble', ""), "%s.preamble" % self.getPath(), 'exec')
self.test = compile(testDict['test'], "%s.test" % self.getPath(), 'eval')
self.success = testDict['success']
self.failure = testDict['failure']
def evalCode(self, moduleDict):
bindings = dict(moduleDict)
exec(self.preamble, bindings)
return str(eval(self.test, bindings))
def execute(self, grades, moduleDict, solutionDict):
result = self.evalCode(moduleDict)
if result == solutionDict['result']:
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\t%s' % self.success)
return True
else:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\t%s' % self.failure)
grades.addMessage('\tstudent result: "%s"' % result)
grades.addMessage('\tcorrect result: "%s"' % solutionDict['result'])
return False
def writeSolution(self, moduleDict, filePath):
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# The result of evaluating the test must equal the below when cast to a string.\n')
handle.write('result: "%s"\n' % self.evalCode(moduleDict))
handle.close()
return True
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT
class LogicTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(LogicTest, self).__init__(question, testDict)
self.preamble = compile(testDict.get('preamble', ""), "%s.preamble" % self.getPath(), 'exec')
self.test = compile(testDict['test'], "%s.test" % self.getPath(), 'eval')
self.success = testDict['success']
self.failure = testDict['failure']
def evalCode(self, moduleDict):
bindings = dict(moduleDict)
exec(self.preamble, bindings)
return eval(self.test, bindings)
def execute(self, grades, moduleDict, solutionDict):
result = self.evalCode(moduleDict)
result = map(lambda x: str(x), result)
result = ' '.join(result)
if result == solutionDict['result']:
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\t%s' % self.success)
return True
for i in range(100):
solI = 'result' + str(i)
if solI not in solutionDict:
break
if result == solutionDict[solI]:
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\t%s' % self.success)
return True
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\t%s' % self.failure)
grades.addMessage('\tstudent result: "%s"' % result)
grades.addMessage('\tcorrect result: "%s"' % solutionDict['result'])
return False
def writeSolution(self, moduleDict, filePath):
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# The result of evaluating the test must equal the below when cast to a string.\n')
solution = self.evalCode(moduleDict)
solution = map(lambda x: str(x), solution)
handle.write('result: "%s"\n' % ' '.join(solution))
handle.close()
return True
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT
class PacphysicsTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(PacphysicsTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
self.t = int(testDict['t'])
self.soln_labels = ["pacphysicsAxioms"]
self.axiom_type = testDict['axiomType']
if self.axiom_type == 'sensor':
self.sensorAxioms = logicPlan.sensorAxioms
self.successorAxioms = logicPlan.allLegalSuccessorAxioms
elif self.axiom_type == 'slam':
self.sensorAxioms = logicPlan.SLAMSensorAxioms
self.successorAxioms = logicPlan.SLAMSuccessorAxioms
else:
raise Exception('Bad test case!')
def solution(self, logicPlan):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
walls_list = lay.walls.data
all_coords = lay.get_all_coords_list()
non_outer_wall_coords = lay.get_non_outer_wall_coords_list()
pacphysics_axioms = logicPlan.pacphysicsAxioms(self.t, all_coords, non_outer_wall_coords, walls_list, self.sensorAxioms, self.successorAxioms)
return pacphysics_axioms
def execute(self, grades, moduleDict, solutionDict):
grades.addMessage('Testing pacphysicsAxioms')
logicPlan = moduleDict['logicPlan']
gold_solution = solutionDict[self.soln_labels[0]]
solution = self.solution(logicPlan)
gold_soln_clauses_list_being_conjoined = str(gold_solution)[1:-1].split(" & ")
soln_clauses_list_being_conjoined = str(solution)[1:-1].split(" & ")
# Check student used conjoin correctly; this is a weak check
# after <=>, we get Action) | (Wall expresisons due to SLAM successor
for soln_clause in soln_clauses_list_being_conjoined:
if "<=>" in soln_clause:
if self.axiom_type == 'sensor':
continue
else:
break
contains_open_parens = ("(" in soln_clause[1:-1]) or ("(" in soln_clause[1:-1])
if contains_open_parens:
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution does not combine sentences properly.')
grades.addMessage('\tMake sure you append the items to join with "and",'
' and conjoin at the end.')
return False
# Check number of clauses is correct.
gold_soln_num_clauses_conjoined = len(gold_soln_clauses_list_being_conjoined)
soln_num_clauses_conjoined = len(soln_clauses_list_being_conjoined)
if gold_soln_num_clauses_conjoined != soln_num_clauses_conjoined:
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution')
grades.addMessage('\tNumber of clauses being conjoined in student solution: {}'.format(
soln_num_clauses_conjoined))
grades.addMessage('\tNumber of clauses being conjoined in correct solution: {}'.format(
gold_soln_num_clauses_conjoined))
return False
for gold_clause in gold_soln_clauses_list_being_conjoined:
if gold_clause not in soln_clauses_list_being_conjoined:
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution does not contain clause {}'.format(gold_clause))
return False
if set(soln_clauses_list_being_conjoined) != set(gold_soln_clauses_list_being_conjoined):
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution on clause set comparison')
grades.addMessage('\tStudent solution: {}'.format(solution))
grades.addMessage('\tCorrect solution: {}'.format(gold_solution))
return False
if sorted(str(solution)) != sorted(str(gold_solution)):
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution on character list comparison')
grades.addMessage('\tStudent solution: {}'.format(solution))
grades.addMessage('\tCorrect solution: {}'.format(gold_solution))
return False
grades.addMessage('PASS: %s' % self.path)
return True
def writeSolution(self, moduleDict, filePath):
logicPlan = moduleDict['logicPlan']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName)
print(self.layoutText)
solution = self.solution(logicPlan)
print("Problem solved")
handle.write('{}: "{}"\n'.format(self.soln_labels[0], str(solution)))
handle.close()
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT
class LocationSatisfiabilityTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(LocationSatisfiabilityTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
self.x0_y0 = eval(testDict['x0_y0'])
self.action0 = testDict['action0']
self.x1_y1 = eval(testDict['x1_y1'])
self.action1 = testDict['action1']
self.soln_labels = ["model_at_x1_y1_1", "model_not_at_x1_y1_1"]
def solution(self, logicPlan):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
pac = logicAgents.CheckSatisfiabilityAgent('checkLocationSatisfiability', 'LocMapProblem', logicPlan)
ghosts = []
disp = textDisplay.NullGraphics()
games = next(pacman.runGames(lay, pac, ghosts, disp, 1, False, catchExceptions=True, timeout=180))
loc_sat_models = logicPlan.checkLocationSatisfiability(self.x1_y1, self.x0_y0, self.action0, self.action1, pac.problem)
return loc_sat_models
def execute(self, grades, moduleDict, solutionDict):
grades.addMessage('Testing checkLocationSatisfiability')
logicPlan = moduleDict['logicPlan']
solution = self.solution(logicPlan)
for i, solution_i in enumerate(solution):
gold_solution_i = solutionDict[self.soln_labels[i]]
solution_i = logicPlan.modelToString(solution_i)
if gold_solution_i == "False" and solution_i != "False":
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution for {}'.format(self.soln_labels[i]))
grades.addMessage('\tStudent model found satisfiable solution but no satisfiable solution exists.')
return False
elif gold_solution_i != "False" and solution_i == "False":
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution for {}'.format(self.soln_labels[i]))
grades.addMessage('\tStudent model found no satisfiable solution when a satisfiable solution exists.')
return False
elif gold_solution_i == "False" and solution_i == "False":
continue
else:
pass
gold_solution_i_str_pairs_list = gold_solution_i[2:-2].split("), (")
gold_solution_i_tuples_list = [tuple(pair.split(", ")) for pair in gold_solution_i_str_pairs_list]
gold_solution_i_dict = dict(gold_solution_i_tuples_list)
solution_i_str_pairs_list = solution_i[2:-2].split("), (")
solution_i_tuples_list = [tuple(pair.split(", ")) for pair in solution_i_str_pairs_list]
solution_i_dict = dict(solution_i_tuples_list)
# Check if student has all of the correct variables.
gold_solution_i_num_vars = len(gold_solution_i_tuples_list)
solution_i_num_vars = len(solution_i_tuples_list)
if gold_solution_i_num_vars != solution_i_num_vars:
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution')
grades.addMessage('\tNumber of variables in student solution: {}'.format(
solution_i_num_vars))
grades.addMessage('\tNumber of variables in correct solution: {}'.format(
gold_solution_i_num_vars))
return False
for gold_solution_var in gold_solution_i_dict:
if gold_solution_var not in solution_i_dict:
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution does not contain the same variables as correct solution')
grades.addMessage('\tCorrect solution variable missing in student solution: {}'.format(
gold_solution_var))
return False
# Some miscellaneous inequality; return which variables are different between solution and student.
for key in gold_solution_i_dict:
if gold_solution_i_dict[key] != solution_i_dict[key]:
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent model does not assign the correct value for variable {}'.format(key))
grades.addMessage('\tStudent value for {}: {}'.format(key, solution_i_dict[key]))
grades.addMessage('\tCorrect value for {}: {}'.format(key, gold_solution_i_dict[key]))
if "WALL" in key:
grades.addMessage('\tDouble check that you are loading the map properly.')
return False
if str(solution_i) != str(gold_solution_i):
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution for {}'.format(self.soln_labels[i]))
grades.addMessage('\tStudent solution: {}'.format(solution_i))
grades.addMessage('\tCorrect solution: {}'.format(gold_solution_i))
return False
grades.addMessage('PASS: %s' % self.path)
return True
def writeSolution(self, moduleDict, filePath):
logicPlan = moduleDict['logicPlan']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName)
print(self.layoutText)
solution = self.solution(logicPlan)
print("Problem solved")
for i, solution_i in enumerate(solution):
handle.write('{}: "{}"\n'.format(self.soln_labels[i], logicPlan.modelToString(solution_i)))
handle.close()
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT
class PositionProblemTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(PositionProblemTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
def solution(self, logicPlan):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
pac = logicAgents.LogicAgent('plp', 'PositionPlanningProblem', logicPlan)
ghosts = []
disp = textDisplay.NullGraphics()
games = next(pacman.runGames(lay, pac, ghosts, disp, 1, False, catchExceptions=True, timeout=300))
gameState = games[0].state
return (gameState.isWin(), gameState.getScore(), pac.actions)
def execute(self, grades, moduleDict, solutionDict):
logicPlan = moduleDict['logicPlan']
gold_path = solutionDict['solution_path']
gold_score = int(solutionDict['solution_score'])
solution = self.solution(logicPlan)
if not solution[0] or solution[1] < gold_score:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
if solution[0]:
result_str = "wins"
else:
result_str = "loses"
grades.addMessage('\tstudent solution result: Pacman %s' % result_str)
grades.addMessage('\tstudent solution score: %d' % solution[1])
grades.addMessage('\tstudent solution path: %s' % ' '.join(solution[2]))
if solution[1] < gold_score:
grades.addMessage('Optimal solution not found.')
grades.addMessage('')
grades.addMessage('\tcorrect solution score: %d' % gold_score)
grades.addMessage('\tcorrect solution path: %s' % gold_path)
return False
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
grades.addMessage('\tsolution score:\t\t%d' % gold_score)
grades.addMessage('\tsolution path:\t\t%s' % gold_path)
return True
def writeSolution(self, moduleDict, filePath):
logicPlan = moduleDict['logicPlan']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName)
print(self.layoutText)
solution = self.solution(logicPlan)
print("Problem solved")
handle.write('solution_win: "%s"\n' % str(solution[0]))
handle.write('solution_score: "%d"\n' % solution[1])
handle.write('solution_path: "%s"\n' % ' '.join(solution[2]))
handle.close()
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT
class FoodProblemTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(FoodProblemTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
def solution(self, logicPlan):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
pac = logicAgents.LogicAgent('flp', 'FoodPlanningProblem', logicPlan)
ghosts = []
disp = textDisplay.NullGraphics()
games = next(pacman.runGames(lay, pac, ghosts, disp, 1, False, catchExceptions=True, timeout=300))
gameState = games[0].state
return (gameState.isWin(), gameState.getScore(), pac.actions)
def execute(self, grades, moduleDict, solutionDict):
logicPlan = moduleDict['logicPlan']
gold_path = solutionDict['solution_path']
gold_score = int(solutionDict['solution_score'])
solution = self.solution(logicPlan)
if not solution[0] or solution[1] < gold_score:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
if solution[0]:
result_str = "wins"
else:
result_str = "loses"
grades.addMessage('\tstudent solution result: Pacman %s' % result_str)
grades.addMessage('\tstudent solution score: %d' % solution[1])
grades.addMessage('\tstudent solution path: %s' % ' '.join(solution[2]))
if solution[1] < gold_score:
grades.addMessage('Optimal solution not found.')
grades.addMessage('')
grades.addMessage('\tcorrect solution score: %d' % gold_score)
grades.addMessage('\tcorrect solution path: %s' % gold_path)
return False
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
grades.addMessage('\tsolution score:\t\t%d' % gold_score)
grades.addMessage('\tsolution path:\t\t%s' % gold_path)
return True
def writeSolution(self, moduleDict, filePath):
logicPlan = moduleDict['logicPlan']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName)
print(self.layoutText)
solution = self.solution(logicPlan)
print("Problem solved")
handle.write('solution_win: "%s"\n' % str(solution[0]))
handle.write('solution_score: "%d"\n' % solution[1])
handle.write('solution_path: "%s"\n' % ' '.join(solution[2]))
handle.close()
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT
class LocalizationProblemTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(LocalizationProblemTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
self.scriptedActions = eval(testDict['actions'])
def solution(self, logicPlan):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
ghosts = []
# TODO: Figure out if we can use no-graphics cleaner
disp = self.question.display
if isinstance(disp, graphicsDisplay.PacmanGraphics): # autograder.py has incorrect options
disp = graphicsDisplay.PacmanGraphics(frameTime=0.5)
pac = logicAgents.LocalizationLogicAgent(
'loc', 'LocalizationProblem', logicPlan, display=disp, scripted_actions=self.scriptedActions)
yield from pacman.runGames(lay, pac, ghosts, disp, 1, False, catchExceptions=True, timeout=300)
def execute(self, grades, moduleDict, solutionDict):
logicPlan = moduleDict['logicPlan']
gold_solution = eval(solutionDict['possible_locations_per_timestep'])
num_timesteps = 0
for t, solution in enumerate(self.solution(logicPlan)):
if solution is None:
num_timesteps = t
break
if set(solution) != set(gold_solution[t]):
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution at timestep t = {}'.format(t))
grades.addMessage('\tStudent solution at time t = {}: {}'.format(t, solution))
grades.addMessage('\tCorrect solution at time t = {}: {}'.format(t, gold_solution[t]))
return False
if num_timesteps != len(gold_solution):
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution')
grades.addMessage('\tStudent solution timestep number: {}'.format(num_timesteps))
grades.addMessage('\tCorrect solution timestep number: {}'.format(len(eval(solutionDict['possible_locations_per_timestep']))))
return False
grades.addMessage('PASS: %s' % self.path)
return True
def writeSolution(self, moduleDict, filePath):
logicPlan = moduleDict['logicPlan']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName)
print(self.layoutText)
solution = self.solution(logicPlan)
print("Problem solved")
handle.write('possible_locations_per_timestep: "{}"\n'.format(str(solution)))
handle.close()
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT
class MappingProblemTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(MappingProblemTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
self.scriptedActions = eval(testDict['actions'])
self.solution_label = 'known_map_per_timestep'
def solution(self, logicPlan):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
ghosts = []
# TODO: Figure out if we can use no-graphics cleaner
disp = self.question.display
if isinstance(disp, graphicsDisplay.PacmanGraphics): # autograder.py has incorrect options
disp = graphicsDisplay.PacmanGraphics(frameTime=0.5, render_walls_beforehand=False)
pac = logicAgents.MappingLogicAgent(
'mp', 'MappingProblem', logicPlan, display=disp, scripted_actions=self.scriptedActions)
yield from pacman.runGames(lay, pac, ghosts, disp, 1, False, catchExceptions=True, timeout=300)
def check_len(self, grades, soln, gold_soln, str_info=""):
if len(soln) != len(gold_soln):
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tstudent solution length {}: {}'.format(str_info, len(soln)))
grades.addMessage('\tcorrect solution length {}: {}'.format(str_info, len(gold_soln)))
return False
return True
def execute(self, grades, moduleDict, solutionDict):
logicPlan = moduleDict['logicPlan']
gold_solution = eval(solutionDict[self.solution_label])
num_timesteps = 0
for t, solution_t in enumerate(self.solution(logicPlan)):
if solution_t == None:
num_timesteps = t
break
if not self.check_len(grades, solution_t, gold_solution[t], "at time t = {}".format(t)):
return False
if solution_t != gold_solution[t]:
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution at timestep t = {}'.format(t))
grades.addMessage('\tStudent solution at time t = {}: {}'.format(t, solution_t))
grades.addMessage('\tCorrect solution at time t = {}: {}'.format(t, gold_solution[t]))
return False
if num_timesteps != len(gold_solution):
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution')
grades.addMessage('\tStudent solution timestep number: {}'.format(num_timesteps))
grades.addMessage('\tCorrect solution timestep number: {}'.format(len(eval(solutionDict[self.solution_label]))))
return False
grades.addMessage('PASS: %s' % self.path)
return True
def writeSolution(self, moduleDict, filePath):
logicPlan = moduleDict['logicPlan']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName)
print(self.layoutText)
solution = self.solution(logicPlan)
print("Problem solved")
handle.write('{}: "{}"\n'.format(self.solution_label, str(solution)))
handle.close()
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT
class SLAMProblemTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(SLAMProblemTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
self.scriptedActions = eval(testDict['actions'])
self.solution_labels = ['known_map_per_timestep', 'possible_locations_per_timestep']
def solution(self, logicPlan):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
ghosts = []
# TODO: Figure out if we can use no-graphics cleaner
disp = self.question.display
if isinstance(disp, graphicsDisplay.PacmanGraphics): # autograder.py has incorrect options
disp = graphicsDisplay.PacmanGraphics(frameTime=0.5, render_walls_beforehand=False)
pac = logicAgents.SLAMLogicAgent(
'slam', 'SLAMProblem', logicPlan, display=disp, scripted_actions=self.scriptedActions)
yield from pacman.runGames(lay, pac, ghosts, disp, 1, False, catchExceptions=True, timeout=1800)
def check_len(self, grades, soln, gold_soln, str_info=""):
if len(soln) != len(gold_soln):
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tstudent solution length {}: {}'.format(str_info, len(soln)))
grades.addMessage('\tcorrect solution length {}: {}'.format(str_info, len(gold_soln)))
return False
return True
def execute(self, grades, moduleDict, solutionDict):
logicPlan = moduleDict['logicPlan']
num_timesteps = 0
for t, solutions_at_t in enumerate(self.solution(logicPlan)):
if solutions_at_t is None:
num_timesteps = t
break
for soln_label, solution in zip(self.solution_labels, solutions_at_t):
gold_solution = eval(solutionDict[soln_label])
if solution != gold_solution[t]:
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution at timestep t = {}'.format(t))
grades.addMessage('\tStudent solution for {} at time t = {}: {}'.format(soln_label, t, solution))
grades.addMessage('\tCorrect solution for {} at time t = {}: {}'.format(soln_label, t, gold_solution[t]))
return False
if num_timesteps != len(eval(solutionDict[self.solution_labels[0]])):
grades.addMessage('FAIL: {}'.format(self.path))
grades.addMessage('\tStudent solution differed from autograder solution')
grades.addMessage('\tStudent solution timestep number: {}'.format(num_timesteps))
grades.addMessage('\tCorrect solution timestep number: {}'.format(len(eval(solutionDict[self.solution_labels[0]]))))
return False
grades.addMessage('PASS: %s' % self.path)
return True
def writeSolution(self, moduleDict, filePath):
logicPlan = moduleDict['logicPlan']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName)
print(self.layoutText)
solution = self.solution(logicPlan)
print("Problem solved")
for soln_label, solution_i in zip(self.solution_labels, solution):
handle.write('{}: "{}"\n'.format(soln_label, str(solution_i)))
handle.close()
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT
class LogicStatementTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(LogicStatementTest, self).__init__(question, testDict)
self.preamble = compile(testDict.get('preamble', ""), "%s.preamble" % self.getPath(), 'exec')
self.test = compile(testDict['test'], "%s.test" % self.getPath(), 'eval')
self.pairs = testDict['pairs']
self.success = testDict['success']
self.failure = testDict['failure']
def evalCode(self, moduleDict):
bindings = dict(moduleDict)
exec(self.preamble, bindings)
return eval(self.test, bindings)
def execute(self, grades, moduleDict, solutionDict):
bindings = dict(moduleDict)
exec(self.preamble, bindings)
truths = eval(self.test, bindings)
model_truth_pairs = eval(self.pairs, bindings)
if str(truths) == solutionDict['result']:
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\t%s' % self.success)
return True
else:
solution_truths = eval(solutionDict['result'])
firstError = 1
while truths[firstError-1] == solution_truths[firstError-1]:
firstError += 1
model = model_truth_pairs[firstError-1][0]
grades.addMessage('FAIL: %s' % self.path)
# grades.addMessage('\t%s' % self.failure)
grades.addMessage('Your solution\'s first error occurred on model %d.' % firstError)
grades.addMessage('MODEL: %s' % model)
grades.addMessage('The correct answer is %s but you returned %s.' % (solution_truths[firstError-1], truths[firstError-1]))
return False
def writeSolution(self, moduleDict, filePath):
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# The result of evaluating the test must equal the below when cast to a string.\n')
handle.write('result: "%s"\n' % self.evalCode(moduleDict))
handle.close()
return True
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
pass
# END SOLUTION NO PROMPT

770
logic/logic_utils.py Normal file
View File

@ -0,0 +1,770 @@
# logic_utils.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""Provide some widely useful utilities. Safe for "from logic_utils import *".
Code originally from https://code.google.com/p/aima-python/
"""
from __future__ import generators
import operator, math, random, copy, sys, os.path, bisect, re
from functools import reduce
#______________________________________________________________________________
# Simple Data Structures: infinity, Dict, Struct
infinity = 1.0e400
def Dict(**entries):
"""Create a dict out of the argument=value arguments.
>>> Dict(a=1, b=2, c=3)
{'a': 1, 'c': 3, 'b': 2}
"""
return entries
class DefaultDict(dict):
"""Dictionary with a default value for unknown keys."""
def __init__(self, default):
self.default = default
def __getitem__(self, key):
if key in self: return self.get(key)
return self.setdefault(key, copy.deepcopy(self.default))
def __copy__(self):
copy = DefaultDict(self.default)
copy.update(self)
return copy
class Struct:
"""Create an instance with argument=value slots.
This is for making a lightweight object whose class doesn't matter."""
def __init__(self, **entries):
self.__dict__.update(entries)
def __cmp__(self, other):
if isinstance(other, Struct):
return cmp(self.__dict__, other.__dict__)
else:
return cmp(self.__dict__, other)
def __repr__(self):
args = ['%s=%s' % (k, repr(v)) for (k, v) in vars(self).items()]
return 'Struct(%s)' % ', '.join(sorted(args))
def update(x, **entries):
"""Update a dict; or an object with slots; according to entries.
>>> update({'a': 1}, a=10, b=20)
{'a': 10, 'b': 20}
>>> update(Struct(a=1), a=10, b=20)
Struct(a=10, b=20)
"""
if isinstance(x, dict):
x.update(entries)
else:
x.__dict__.update(entries)
return x
#______________________________________________________________________________
# Functions on Sequences (mostly inspired by Common Lisp)
# NOTE: Sequence functions (count_if, find_if, every, some) take function
# argument first (like reduce, filter, and map).
def removeall(item, seq):
"""Return a copy of seq (or string) with all occurences of item removed.
>>> removeall(3, [1, 2, 3, 3, 2, 1, 3])
[1, 2, 2, 1]
>>> removeall(4, [1, 2, 3])
[1, 2, 3]
"""
if isinstance(seq, str):
return seq.replace(item, '')
else:
return [x for x in seq if x != item]
def unique(seq):
"""Remove duplicate elements from seq. Assumes hashable elements.
>>> unique([1, 2, 3, 2, 1])
[1, 2, 3]
"""
return list(set(seq))
def product(numbers):
"""Return the product of the numbers.
>>> product([1,2,3,4])
24
"""
return reduce(operator.mul, numbers, 1)
def count_if(predicate, seq):
"""Count the number of elements of seq for which the predicate is true.
>>> count_if(callable, [42, None, max, min])
2
"""
f = lambda count, x: count + (not not predicate(x))
return reduce(f, seq, 0)
def find_if(predicate, seq):
"""If there is an element of seq that satisfies predicate; return it.
>>> find_if(callable, [3, min, max])
<built-in function min>
>>> find_if(callable, [1, 2, 3])
"""
for x in seq:
if predicate(x): return x
return None
def every(predicate, seq):
"""True if every element of seq satisfies predicate.
>>> every(callable, [min, max])
1
>>> every(callable, [min, 3])
0
"""
for x in seq:
if not predicate(x): return False
return True
def some(predicate, seq):
"""If some element x of seq satisfies predicate(x), return predicate(x).
>>> some(callable, [min, 3])
1
>>> some(callable, [2, 3])
0
"""
for x in seq:
px = predicate(x)
if px: return px
return False
def isin(elt, seq):
"""Like (elt in seq), but compares with is, not ==.
>>> e = []; isin(e, [1, e, 3])
True
>>> isin(e, [1, [], 3])
False
"""
for x in seq:
if elt is x: return True
return False
#______________________________________________________________________________
# Functions on sequences of numbers
# NOTE: these take the sequence argument first, like min and max,
# and like standard math notation: \sigma (i = 1..n) fn(i)
# A lot of programing is finding the best value that satisfies some condition;
# so there are three versions of argmin/argmax, depending on what you want to
# do with ties: return the first one, return them all, or pick at random.
def argmin(seq, fn):
"""Return an element with lowest fn(seq[i]) score; tie goes to first one.
>>> argmin(['one', 'to', 'three'], len)
'to'
"""
best = seq[0]; best_score = fn(best)
for x in seq:
x_score = fn(x)
if x_score < best_score:
best, best_score = x, x_score
return best
def argmin_list(seq, fn):
"""Return a list of elements of seq[i] with the lowest fn(seq[i]) scores.
>>> argmin_list(['one', 'to', 'three', 'or'], len)
['to', 'or']
"""
best_score, best = fn(seq[0]), []
for x in seq:
x_score = fn(x)
if x_score < best_score:
best, best_score = [x], x_score
elif x_score == best_score:
best.append(x)
return best
def argmin_random_tie(seq, fn):
"""Return an element with lowest fn(seq[i]) score; break ties at random.
Thus, for all s,f: argmin_random_tie(s, f) in argmin_list(s, f)"""
best_score = fn(seq[0]); n = 0
for x in seq:
x_score = fn(x)
if x_score < best_score:
best, best_score = x, x_score; n = 1
elif x_score == best_score:
n += 1
if random.randrange(n) == 0:
best = x
return best
def argmax(seq, fn):
"""Return an element with highest fn(seq[i]) score; tie goes to first one.
>>> argmax(['one', 'to', 'three'], len)
'three'
"""
return argmin(seq, lambda x: -fn(x))
def argmax_list(seq, fn):
"""Return a list of elements of seq[i] with the highest fn(seq[i]) scores.
>>> argmax_list(['one', 'three', 'seven'], len)
['three', 'seven']
"""
return argmin_list(seq, lambda x: -fn(x))
def argmax_random_tie(seq, fn):
"Return an element with highest fn(seq[i]) score; break ties at random."
return argmin_random_tie(seq, lambda x: -fn(x))
#______________________________________________________________________________
# Statistical and mathematical functions
def histogram(values, mode=0, bin_function=None):
"""Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.
If bin_function is given, map it over values first."""
if bin_function: values = map(bin_function, values)
bins = {}
for val in values:
bins[val] = bins.get(val, 0) + 1
if mode:
return sorted(bins.items(), key=lambda x: (x[1],x[0]), reverse=True)
else:
return sorted(bins.items())
def log2(x):
"""Base 2 logarithm.
>>> log2(1024)
10.0
"""
return math.log10(x) / math.log10(2)
def mode(values):
"""Return the most common value in the list of values.
>>> mode([1, 2, 3, 2])
2
"""
return histogram(values, mode=1)[0][0]
def median(values):
"""Return the middle value, when the values are sorted.
If there are an odd number of elements, try to average the middle two.
If they can't be averaged (e.g. they are strings), choose one at random.
>>> median([10, 100, 11])
11
>>> median([1, 2, 3, 4])
2.5
"""
n = len(values)
values = sorted(values)
if n % 2 == 1:
return values[n/2]
else:
middle2 = values[(n/2)-1:(n/2)+1]
try:
return mean(middle2)
except TypeError:
return random.choice(middle2)
def mean(values):
"""Return the arithmetic average of the values."""
return sum(values) / float(len(values))
def stddev(values, meanval=None):
"""The standard deviation of a set of values.
Pass in the mean if you already know it."""
if meanval is None: meanval = mean(values)
return math.sqrt(sum([(x - meanval)**2 for x in values]) / (len(values)-1))
def dotproduct(X, Y):
"""Return the sum of the element-wise product of vectors x and y.
>>> dotproduct([1, 2, 3], [1000, 100, 10])
1230
"""
return sum([x * y for x, y in zip(X, Y)])
def vector_add(a, b):
"""Component-wise addition of two vectors.
>>> vector_add((0, 1), (8, 9))
(8, 10)
"""
return tuple(map(operator.add, a, b))
def probability(p):
"Return true with probability p."
return p > random.uniform(0.0, 1.0)
def weighted_sample_with_replacement(seq, weights, n):
"""Pick n samples from seq at random, with replacement, with the
probability of each element in proportion to its corresponding
weight."""
sample = weighted_sampler(seq, weights)
return [sample() for s in range(n)]
def weighted_sampler(seq, weights):
"Return a random-sample function that picks from seq weighted by weights."
totals = []
for w in weights:
totals.append(w + totals[-1] if totals else w)
return lambda: seq[bisect.bisect(totals, random.uniform(0, totals[-1]))]
def num_or_str(x):
"""The argument is a string; convert to a number if possible, or strip it.
>>> num_or_str('42')
42
>>> num_or_str(' 42x ')
'42x'
"""
if isnumber(x): return x
try:
return int(x)
except ValueError:
try:
return float(x)
except ValueError:
return str(x).strip()
def normalize(numbers):
"""Multiply each number by a constant such that the sum is 1.0
>>> normalize([1,2,1])
[0.25, 0.5, 0.25]
"""
total = float(sum(numbers))
return [n / total for n in numbers]
def clip(x, lowest, highest):
"""Return x clipped to the range [lowest..highest].
>>> [clip(x, 0, 1) for x in [-1, 0.5, 10]]
[0, 0.5, 1]
"""
return max(lowest, min(x, highest))
#______________________________________________________________________________
## OK, the following are not as widely useful utilities as some of the other
## functions here, but they do show up wherever we have 2D grids: Wumpus and
## Vacuum worlds, TicTacToe and Checkers, and markov decision Processes.
orientations = [(1, 0), (0, 1), (-1, 0), (0, -1)]
def turn_heading(heading, inc, headings=orientations):
return headings[(headings.index(heading) + inc) % len(headings)]
def turn_right(heading):
return turn_heading(heading, -1)
def turn_left(heading):
return turn_heading(heading, +1)
def distance(a, b):
"The distance between two (x, y) points."
(ax, ay) = a
(bx, by) = b
return math.hypot((ax - bx), (ay - by))
def distance2(a, b):
"The square of the distance between two (x, y) points."
(ax, ay) = a
(bx, by) = b
return (ax - bx)**2 + (ay - by)**2
def vector_clip(vector, lowest, highest):
"""Return vector, except if any element is less than the corresponding
value of lowest or more than the corresponding value of highest, clip to
those values.
>>> vector_clip((-1, 10), (0, 0), (9, 9))
(0, 9)
"""
return type(vector)(map(clip, vector, lowest, highest))
#______________________________________________________________________________
# Misc Functions
def printf(format, *args):
"""Format args with the first argument as format string, and write.
Return the last arg, or format itself if there are no args."""
sys.stdout.write(str(format) % args)
return if_(args, lambda: args[-1], lambda: format)
def caller(n=1):
"""Return the name of the calling function n levels up in the frame stack.
>>> caller(0)
'caller'
>>> def f():
... return caller()
>>> f()
'f'
"""
import inspect
return inspect.getouterframes(inspect.currentframe())[n][3]
def memoize(fn, slot=None):
"""Memoize fn: make it remember the computed value for any argument list.
If slot is specified, store result in that slot of first argument.
If slot is false, store results in a dictionary."""
if slot:
def memoized_fn(obj, *args):
if hasattr(obj, slot):
return getattr(obj, slot)
else:
val = fn(obj, *args)
setattr(obj, slot, val)
return val
else:
def memoized_fn(*args):
if not memoized_fn.cache.has_key(args):
memoized_fn.cache[args] = fn(*args)
return memoized_fn.cache[args]
memoized_fn.cache = {}
return memoized_fn
def if_(test, result, alternative):
"""Like C++ and Java's (test ? result : alternative), except
both result and alternative are always evaluated. However, if
either evaluates to a function, it is applied to the empty arglist,
so you can delay execution by putting it in a lambda.
>>> if_(2 + 2 == 4, 'ok', lambda: expensive_computation())
'ok'
"""
if test:
if callable(result): return result()
return result
else:
if callable(alternative): return alternative()
return alternative
def name(object):
"Try to find some reasonable name for the object."
return (getattr(object, 'name', 0) or getattr(object, '__name__', 0)
or getattr(getattr(object, '__class__', 0), '__name__', 0)
or str(object))
def isnumber(x):
"Is x a number? We say it is if it has a __int__ method."
return hasattr(x, '__int__')
def issequence(x):
"Is x a sequence? We say it is if it has a __getitem__ method."
return hasattr(x, '__getitem__')
def print_table(table, header=None, sep=' ', numfmt='%g'):
"""Print a list of lists as a table, so that columns line up nicely.
header, if specified, will be printed as the first row.
numfmt is the format for all numbers; you might want e.g. '%6.2f'.
(If you want different formats in different columns, don't use print_table.)
sep is the separator between columns."""
justs = [if_(isnumber(x), 'rjust', 'ljust') for x in table[0]]
if header:
table = [header] + table
table = [[if_(isnumber(x), lambda: numfmt % x, lambda: x) for x in row]
for row in table]
maxlen = lambda seq: max(map(len, seq))
sizes = map(maxlen, zip(*[map(str, row) for row in table]))
for row in table:
print(sep.join(getattr(str(x), j)(size)
for (j, size, x) in zip(justs, sizes, row)))
def AIMAFile(components, mode='r'):
"Open a file based at the AIMA root directory."
import logic_utils
dir = os.path.dirname(logic_utils.__file__)
return open(apply(os.path.join, [dir] + components), mode)
def DataFile(name, mode='r'):
"Return a file in the AIMA /data directory."
return AIMAFile(['..', 'data', name], mode)
def unimplemented():
"Use this as a stub for not-yet-implemented functions."
raise NotImplementedError()
#______________________________________________________________________________
# Queues: Stack, FIFOQueue, PriorityQueue
class Queue:
"""Queue is an abstract class/interface. There are three types:
Stack(): A Last In First Out Queue.
FIFOQueue(): A First In First Out Queue.
PriorityQueue(order, f): Queue in sorted order (default min-first).
Each type supports the following methods and functions:
q.append(item) -- add an item to the queue
q.extend(items) -- equivalent to: for item in items: q.append(item)
q.pop() -- return the top item from the queue
len(q) -- number of items in q (also q.__len())
item in q -- does q contain item?
Note that isinstance(Stack(), Queue) is false, because we implement stacks
as lists. If Python ever gets interfaces, Queue will be an interface."""
def __init__(self):
abstract
def extend(self, items):
for item in items: self.append(item)
def Stack():
"""Return an empty list, suitable as a Last-In-First-Out Queue."""
return []
class FIFOQueue(Queue):
"""A First-In-First-Out Queue."""
def __init__(self):
self.A = []; self.start = 0
def append(self, item):
self.A.append(item)
def __len__(self):
return len(self.A) - self.start
def extend(self, items):
self.A.extend(items)
def pop(self):
e = self.A[self.start]
self.start += 1
if self.start > 5 and self.start > len(self.A)/2:
self.A = self.A[self.start:]
self.start = 0
return e
def __contains__(self, item):
return item in self.A[self.start:]
class PriorityQueue(Queue):
"""A queue in which the minimum (or maximum) element (as determined by f and
order) is returned first. If order is min, the item with minimum f(x) is
returned first; if order is max, then it is the item with maximum f(x).
Also supports dict-like lookup."""
def __init__(self, order=min, f=lambda x: x):
update(self, A=[], order=order, f=f)
def append(self, item):
bisect.insort(self.A, (self.f(item), item))
def __len__(self):
return len(self.A)
def pop(self):
if self.order == min:
return self.A.pop(0)[1]
else:
return self.A.pop()[1]
def __contains__(self, item):
return some(lambda _, x: x == item, self.A)
def __getitem__(self, key):
for _, item in self.A:
if item == key:
return item
def __delitem__(self, key):
for i, (value, item) in enumerate(self.A):
if item == key:
self.A.pop(i)
return
## Fig: The idea is we can define things like Fig[3,10] later.
## Alas, it is Fig[3,10] not Fig[3.10], because that would be the same
## as Fig[3.1]
Fig = {}
#______________________________________________________________________________
# Support for doctest
def ignore(x): None
def random_tests(text):
"""Some functions are stochastic. We want to be able to write a test
with random output. We do that by ignoring the output."""
def fixup(test):
if " = " in test:
return ">>> " + test
else:
return ">>> ignore(" + test + ")"
tests = re.findall(">>> (.*)", text)
return '\n'.join(map(fixup, tests))
#______________________________________________________________________________
__doc__ += """
>>> d = DefaultDict(0)
>>> d['x'] += 1
>>> d['x']
1
>>> d = DefaultDict([])
>>> d['x'] += [1]
>>> d['y'] += [2]
>>> d['x']
[1]
>>> s = Struct(a=1, b=2)
>>> s.a
1
>>> s.a = 3
>>> s
Struct(a=3, b=2)
>>> def is_even(x):
... return x % 2 == 0
>>> sorted([1, 2, -3])
[-3, 1, 2]
>>> sorted(range(10), key=is_even)
[1, 3, 5, 7, 9, 0, 2, 4, 6, 8]
>>> sorted(range(10), lambda x,y: y-x)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> removeall(4, [])
[]
>>> removeall('s', 'This is a test. Was a test.')
'Thi i a tet. Wa a tet.'
>>> removeall('s', 'Something')
'Something'
>>> removeall('s', '')
''
>>> list(reversed([]))
[]
>>> count_if(is_even, [1, 2, 3, 4])
2
>>> count_if(is_even, [])
0
>>> argmax([1], lambda x: x*x)
1
>>> argmin([1], lambda x: x*x)
1
# Test of memoize with slots in structures
>>> countries = [Struct(name='united states'), Struct(name='canada')]
# Pretend that 'gnp' was some big hairy operation:
>>> def gnp(country):
... print('calculating gnp ...')
... return len(country.name) * 1e10
>>> gnp = memoize(gnp, '_gnp')
>>> list(map(gnp, countries))
calculating gnp ...
calculating gnp ...
[130000000000.0, 60000000000.0]
>>> countries
[Struct(_gnp=130000000000.0, name='united states'), Struct(_gnp=60000000000.0, name='canada')]
# This time we avoid re-doing the calculation
>>> list(map(gnp, countries))
[130000000000.0, 60000000000.0]
# Test Queues:
>>> nums = [1, 8, 2, 7, 5, 6, -99, 99, 4, 3, 0]
>>> def qtest(q):
... q.extend(nums)
... for num in nums: assert num in q
... assert 42 not in q
... return [q.pop() for i in range(len(q))]
>>> qtest(Stack())
[0, 3, 4, 99, -99, 6, 5, 7, 2, 8, 1]
>>> qtest(FIFOQueue())
[1, 8, 2, 7, 5, 6, -99, 99, 4, 3, 0]
>>> qtest(PriorityQueue(min))
[-99, 0, 1, 2, 3, 4, 5, 6, 7, 8, 99]
>>> qtest(PriorityQueue(max))
[99, 8, 7, 6, 5, 4, 3, 2, 1, 0, -99]
>>> qtest(PriorityQueue(min, abs))
[0, 1, 2, 3, 4, 5, 6, 7, 8, -99, 99]
>>> qtest(PriorityQueue(max, abs))
[99, -99, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> vals = [100, 110, 160, 200, 160, 110, 200, 200, 220]
>>> histogram(vals)
[(100, 1), (110, 2), (160, 2), (200, 3), (220, 1)]
>>> histogram(vals, 1)
[(200, 3), (160, 2), (110, 2), (220, 1), (100, 1)]
>>> histogram(vals, 1, lambda v: round(v, -2))
[(200.0, 6), (100.0, 3)]
>>> log2(1.0)
0.0
>>> def fib(n):
... return (n<=1 and 1) or (fib(n-1) + fib(n-2))
>>> fib(9)
55
# Now we make it faster:
>>> fib = memoize(fib)
>>> fib(9)
55
>>> q = Stack()
>>> q.append(1)
>>> q.append(2)
>>> q.pop(), q.pop()
(2, 1)
>>> q = FIFOQueue()
>>> q.append(1)
>>> q.append(2)
>>> q.pop(), q.pop()
(1, 2)
>>> abc = set('abc')
>>> bcd = set('bcd')
>>> 'a' in abc
True
>>> 'a' in bcd
False
>>> list(abc.intersection(bcd))
['c', 'b']
>>> list(abc.union(bcd))
['a', 'c', 'b', 'd']
## From "What's new in Python 2.4", but I added calls to sl
>>> def sl(x):
... return sorted(list(x))
>>> a = set('abracadabra') # form a set from a string
>>> 'z' in a # fast membership testing
False
>>> sl(a) # unique letters in a
['a', 'b', 'c', 'd', 'r']
>>> b = set('alacazam') # form a second set
>>> sl(a - b) # letters in a but not in b
['b', 'd', 'r']
>>> sl(a | b) # letters in either a or b
['a', 'b', 'c', 'd', 'l', 'm', 'r', 'z']
>>> sl(a & b) # letters in both a and b
['a', 'c']
>>> sl(a ^ b) # letters in a or b but not both
['b', 'd', 'l', 'm', 'r', 'z']
>>> a.add('z') # add a new element
>>> a.update('wxy') # add multiple new elements
>>> sl(a)
['a', 'b', 'c', 'd', 'r', 'w', 'x', 'y', 'z']
>>> a.remove('x') # take one element out
>>> sl(a)
['a', 'b', 'c', 'd', 'r', 'w', 'y', 'z']
>>> weighted_sample_with_replacement([], [], 0)
[]
>>> weighted_sample_with_replacement('a', [3], 2)
['a', 'a']
>>> weighted_sample_with_replacement('ab', [0, 3], 3)
['b', 'b', 'b']
"""
__doc__ += random_tests("""
>>> weighted_sample_with_replacement(range(10), [x*x for x in range(10)], 3)
[8, 9, 6]
""")

745
logic/pacman.py Normal file
View File

@ -0,0 +1,745 @@
# pacman.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
Pacman.py holds the logic for the classic pacman game along with the main
code to run a game. This file is divided into three sections:
(i) Your interface to the pacman world:
Pacman is a complex environment. You probably don't want to
read through all of the code we wrote to make the game runs
correctly. This section contains the parts of the code
that you will need to understand in order to complete the
project. There is also some code in game.py that you should
understand.
(ii) The hidden secrets of pacman:
This section contains all of the logic code that the pacman
environment uses to decide who can move where, who dies when
things collide, etc. You shouldn't need to read this section
of code, but you can if you want.
(iii) Framework to start a game:
The final section contains the code for reading the command
you use to set up the game, then starting up a new game, along with
linking in all the external parts (agent functions, graphics).
Check this section out to see all the options available to you.
To play your first game, type 'python pacman.py' from the command line.
The keys are 'a', 's', 'd', and 'w' to move (or arrow keys). Have fun!
"""
from game import GameStateData
from game import Game
from game import Directions
from game import Actions
from util import nearestPoint
from util import manhattanDistance
import util
import layout
import sys
import types
import time
import random
import os
###################################################
# YOUR INTERFACE TO THE PACMAN WORLD: A GameState #
###################################################
class GameState:
"""
A GameState specifies the full game state, including the food, capsules,
agent configurations and score changes.
GameStates are used by the Game object to capture the actual state of the game and
can be used by agents to reason about the game.
Much of the information in a GameState is stored in a GameStateData object. We
strongly suggest that you access that data via the accessor methods below rather
than referring to the GameStateData object directly.
Note that in classic Pacman, Pacman is always agent 0.
"""
####################################################
# Accessor methods: use these to access state data #
####################################################
# static variable keeps track of which states have had getLegalActions called
explored = set()
def getAndResetExplored():
tmp = GameState.explored.copy()
GameState.explored = set()
return tmp
getAndResetExplored = staticmethod(getAndResetExplored)
def getLegalActions(self, agentIndex=0):
"""
Returns the legal actions for the agent specified.
"""
# GameState.explored.add(self)
if self.isWin() or self.isLose():
return []
if agentIndex == 0: # Pacman is moving
return PacmanRules.getLegalActions(self)
else:
return GhostRules.getLegalActions(self, agentIndex)
def generateSuccessor(self, agentIndex, action):
"""
Returns the successor state after the specified agent takes the action.
"""
# Check that successors exist
if self.isWin() or self.isLose():
raise Exception('Can\'t generate a successor of a terminal state.')
# Copy current state
state = GameState(self)
# Let agent's logic deal with its action's effects on the board
if agentIndex == 0: # Pacman is moving
state.data._eaten = [False for i in range(state.getNumAgents())]
PacmanRules.applyAction(state, action)
else: # A ghost is moving
GhostRules.applyAction(state, action, agentIndex)
# Time passes
if agentIndex == 0:
state.data.scoreChange += -TIME_PENALTY # Penalty for waiting around
else:
GhostRules.decrementTimer(state.data.agentStates[agentIndex])
# Resolve multi-agent effects
GhostRules.checkDeath(state, agentIndex)
# Book keeping
state.data._agentMoved = agentIndex
state.data.score += state.data.scoreChange
GameState.explored.add(self)
GameState.explored.add(state)
return state
def getLegalPacmanActions(self):
return self.getLegalActions(0)
def generatePacmanSuccessor(self, action):
"""
Generates the successor state after the specified pacman move
"""
return self.generateSuccessor(0, action)
def getPacmanState(self):
"""
Returns an AgentState object for pacman (in game.py)
state.pos gives the current position
state.direction gives the travel vector
"""
return self.data.agentStates[0].copy()
def getPacmanPosition(self):
return self.data.agentStates[0].getPosition()
def getGhostStates(self):
return self.data.agentStates[1:]
def getGhostState(self, agentIndex):
if agentIndex == 0 or agentIndex >= self.getNumAgents():
raise Exception("Invalid index passed to getGhostState")
return self.data.agentStates[agentIndex]
def getGhostPosition(self, agentIndex):
if agentIndex == 0:
raise Exception("Pacman's index passed to getGhostPosition")
return self.data.agentStates[agentIndex].getPosition()
def getGhostPositions(self):
return [s.getPosition() for s in self.getGhostStates()]
def getNumAgents(self):
return len(self.data.agentStates)
def getScore(self):
return float(self.data.score)
def getCapsules(self):
"""
Returns a list of positions (x,y) of the remaining capsules.
"""
return self.data.capsules
def getNumFood(self):
return self.data.food.count()
def getFood(self):
"""
Returns a Grid of boolean food indicator variables.
Grids can be accessed via list notation, so to check
if there is food at (x,y), just call
currentFood = state.getFood()
if currentFood[x][y] == True: ...
"""
return self.data.food
def getWalls(self):
"""
Returns a Grid of boolean wall indicator variables.
Grids can be accessed via list notation, so to check
if there is a wall at (x,y), just call
walls = state.getWalls()
if walls[x][y] == True: ...
"""
return self.data.layout.walls
def getCoordsWithoutWalls(self):
wall_grid = self.getWalls()
nonwall_coords_list = []
for y in range(wall_grid.height):
for x in range(wall_grid.width):
if not wall_grid[x][y]:
nonwall_coords_list.append((x,y))
return nonwall_coords_list
def hasFood(self, x, y):
return self.data.food[x][y]
def hasWall(self, x, y):
return self.data.layout.walls[x][y]
def isLose(self):
return self.data._lose
def isWin(self):
return self.data._win
#############################################
# Helper methods: #
# You shouldn't need to call these directly #
#############################################
def __init__(self, prevState=None):
"""
Generates a new state by copying information from its predecessor.
"""
if prevState != None: # Initial state
self.data = GameStateData(prevState.data)
else:
self.data = GameStateData()
def deepCopy(self):
state = GameState(self)
state.data = self.data.deepCopy()
return state
def __eq__(self, other):
"""
Allows two states to be compared.
"""
return hasattr(other, 'data') and self.data == other.data
def __hash__(self):
"""
Allows states to be keys of dictionaries.
"""
return hash(self.data)
def __str__(self):
return str(self.data)
def initialize(self, layout, numGhostAgents=1000):
"""
Creates an initial game state from a layout array (see layout.py).
"""
self.data.initialize(layout, numGhostAgents)
############################################################################
# THE HIDDEN SECRETS OF PACMAN #
# #
# You shouldn't need to look through the code in this section of the file. #
############################################################################
SCARED_TIME = 40 # Moves ghosts are scared
COLLISION_TOLERANCE = 0.7 # How close ghosts must be to Pacman to kill
TIME_PENALTY = 1 # Number of points lost each round
class ClassicGameRules:
"""
These game rules manage the control flow of a game, deciding when
and how the game starts and ends.
"""
def __init__(self, timeout=30):
self.timeout = timeout
def newGame(self, layout, pacmanAgent, ghostAgents, display, quiet=False, catchExceptions=False):
agents = [pacmanAgent] + ghostAgents[:layout.getNumGhosts()]
initState = GameState()
initState.initialize(layout, len(ghostAgents))
game = Game(agents, display, self, catchExceptions=catchExceptions)
game.state = initState
self.initialState = initState.deepCopy()
self.quiet = quiet
return game
def process(self, state, game):
"""
Checks to see whether it is time to end the game.
"""
if state.isWin():
self.win(state, game)
if state.isLose():
self.lose(state, game)
def win(self, state, game):
if not self.quiet:
print("Pacman emerges victorious! Score: %d" % state.data.score)
game.gameOver = True
def lose(self, state, game):
if not self.quiet:
print("Pacman died! Score: %d" % state.data.score)
game.gameOver = True
def getProgress(self, game):
return float(game.state.getNumFood()) / self.initialState.getNumFood()
def agentCrash(self, game, agentIndex):
if agentIndex == 0:
print("Pacman crashed")
else:
print("A ghost crashed")
def getMaxTotalTime(self, agentIndex):
return self.timeout
def getMaxStartupTime(self, agentIndex):
return self.timeout
def getMoveWarningTime(self, agentIndex):
return self.timeout
def getMoveTimeout(self, agentIndex):
return self.timeout
def getMaxTimeWarnings(self, agentIndex):
return 0
class PacmanRules:
"""
These functions govern how pacman interacts with his environment under
the classic game rules.
"""
PACMAN_SPEED = 1
def getLegalActions(state):
"""
Returns a list of possible actions.
"""
return Actions.getPossibleActions(state.getPacmanState().configuration, state.data.layout.walls)
getLegalActions = staticmethod(getLegalActions)
def applyAction(state, action):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions(state)
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector(action, PacmanRules.PACMAN_SPEED)
pacmanState.configuration = pacmanState.configuration.generateSuccessor(vector)
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint(next)
if manhattanDistance(nearest, next) <= 0.5:
# Remove food
PacmanRules.consume(nearest, state)
applyAction = staticmethod(applyAction)
def consume(position, state):
x, y = position
# Eat food
if state.data.food[x][y]:
state.data.scoreChange += 10
state.data.food = state.data.food.copy()
state.data.food[x][y] = False
state.data._foodEaten = position
# TODO: cache numFood?
numFood = state.getNumFood()
if numFood == 0 and not state.data._lose:
state.data.scoreChange += 500
state.data._win = True
# Eat capsule
if(position in state.getCapsules()):
state.data.capsules.remove(position)
state.data._capsuleEaten = position
# Reset all ghosts' scared timers
for index in range(1, len(state.data.agentStates)):
state.data.agentStates[index].scaredTimer = SCARED_TIME
consume = staticmethod(consume)
class GhostRules:
# PMV
ghostCanStop = True
"""
These functions dictate how ghosts interact with their environment.
"""
GHOST_SPEED = 1.0
def getLegalActions(state, ghostIndex):
"""
Ghosts cannot stop, and cannot turn around unless they
reach a dead end, but can turn 90 degrees at intersections.
"""
conf = state.getGhostState(ghostIndex).configuration
possibleActions = Actions.getPossibleActions(conf, state.data.layout.walls)
reverse = Actions.reverseDirection(conf.direction)
# PMV
if not GhostRules.ghostCanStop and Directions.STOP in possibleActions:
possibleActions.remove(Directions.STOP)
if reverse in possibleActions and len(possibleActions) > 1 and reverse != Directions.STOP:
possibleActions.remove(reverse)
return possibleActions
getLegalActions = staticmethod(getLegalActions)
def applyAction(state, action, ghostIndex):
legal = GhostRules.getLegalActions(state, ghostIndex)
if action not in legal:
raise Exception("Illegal ghost action " + str(action))
ghostState = state.data.agentStates[ghostIndex]
speed = GhostRules.GHOST_SPEED
if ghostState.scaredTimer > 0:
speed /= 2.0
vector = Actions.directionToVector(action, speed)
ghostState.configuration = ghostState.configuration.generateSuccessor(vector)
applyAction = staticmethod(applyAction)
def decrementTimer(ghostState):
timer = ghostState.scaredTimer
if timer == 1:
ghostState.configuration.pos = nearestPoint(ghostState.configuration.pos)
ghostState.scaredTimer = max(0, timer - 1)
decrementTimer = staticmethod(decrementTimer)
def checkDeath(state, agentIndex):
pacmanPosition = state.getPacmanPosition()
if agentIndex == 0: # Pacman just moved; Anyone can kill him
for index in range(1, len(state.data.agentStates)):
ghostState = state.data.agentStates[index]
ghostPosition = ghostState.configuration.getPosition()
if GhostRules.canKill(pacmanPosition, ghostPosition):
GhostRules.collide(state, ghostState, index)
else:
ghostState = state.data.agentStates[agentIndex]
ghostPosition = ghostState.configuration.getPosition()
if GhostRules.canKill(pacmanPosition, ghostPosition):
GhostRules.collide(state, ghostState, agentIndex)
checkDeath = staticmethod(checkDeath)
def collide(state, ghostState, agentIndex):
if ghostState.scaredTimer > 0:
state.data.scoreChange += 200
GhostRules.placeGhost(state, ghostState)
ghostState.scaredTimer = 0
# Added for first-person
state.data._eaten[agentIndex] = True
else:
if not state.data._win:
state.data.scoreChange -= 500
state.data._lose = True
collide = staticmethod(collide)
def canKill(pacmanPosition, ghostPosition):
return manhattanDistance(ghostPosition, pacmanPosition) <= COLLISION_TOLERANCE
canKill = staticmethod(canKill)
def placeGhost(state, ghostState):
ghostState.configuration = ghostState.start
placeGhost = staticmethod(placeGhost)
#############################
# FRAMEWORK TO START A GAME #
#############################
def default(str):
return str + ' [Default: %default]'
def parseAgentArgs(str):
if str == None:
return {}
pieces = str.split(',')
opts = {}
for p in pieces:
if '=' in p:
key, val = p.split('=')
else:
key, val = p, 1
opts[key] = val
return opts
def readCommand(argv):
"""
Processes the command used to run pacman from the command line.
"""
from optparse import OptionParser
usageStr = """
USAGE: python pacman.py <options>
EXAMPLES: (1) python pacman.py
- starts an interactive game
(2) python pacman.py --layout smallClassic --zoom 2
OR python pacman.py -l smallClassic -z 2
- starts an interactive game on a smaller board, zoomed in
"""
parser = OptionParser(usageStr)
parser.add_option('-n', '--numGames', dest='numGames', type='int',
help=default('the number of GAMES to play'), metavar='GAMES', default=1)
parser.add_option('-l', '--layout', dest='layout',
help=default('the LAYOUT_FILE from which to load the map layout'),
metavar='LAYOUT_FILE', default='mediumClassic')
parser.add_option('-p', '--pacman', dest='pacman',
help=default('the agent TYPE in the pacmanAgents module to use'),
metavar='TYPE', default='KeyboardAgent')
parser.add_option('-t', '--textGraphics', action='store_true', dest='textGraphics',
help='Display output as text only', default=False)
parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics',
help='Generate minimal output and no graphics', default=False)
parser.add_option('-g', '--ghosts', dest='ghost',
help=default('the ghost agent TYPE in the ghostAgents module to use'),
metavar='TYPE', default='RandomGhost')
parser.add_option('-k', '--numghosts', type='int', dest='numGhosts',
help=default('The maximum number of ghosts to use'), default=4)
parser.add_option('-z', '--zoom', type='float', dest='zoom',
help=default('Zoom the size of the graphics window'), default=1.0)
parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed',
help='Fixes the random seed to always play the same game', default=False)
parser.add_option('-r', '--recordActions', action='store_true', dest='record',
help='Writes game histories to a file (named by the time they were played)', default=False)
parser.add_option('--replay', dest='gameToReplay',
help='A recorded game file (pickle) to replay', default=None)
parser.add_option('-a', '--agentArgs', dest='agentArgs',
help='Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"')
parser.add_option('-x', '--numTraining', dest='numTraining', type='int',
help=default('How many episodes are training (suppresses output)'), default=0)
parser.add_option('--frameTime', dest='frameTime', type='float',
help=default('Time to delay between frames; <0 means keyboard'), default=0.1)
parser.add_option('-c', '--catchExceptions', action='store_true', dest='catchExceptions',
help='Turns on exception handling and timeouts during games', default=False)
parser.add_option('--timeout', dest='timeout', type='int',
help=default('Maximum length of time an agent can spend computing in a single game'), default=30)
options, otherjunk = parser.parse_args(argv)
if len(otherjunk) != 0:
raise Exception('Command line input not understood: ' + str(otherjunk))
args = dict()
# Fix the random seed
if options.fixRandomSeed:
random.seed('cs188')
# Choose a layout
args['layout'] = layout.getLayout(options.layout)
if args['layout'] == None:
raise Exception("The layout " + options.layout + " cannot be found")
# Choose a Pacman agent
noKeyboard = options.gameToReplay == None and (options.textGraphics or options.quietGraphics)
pacmanType = loadAgent(options.pacman, noKeyboard)
agentOpts = parseAgentArgs(options.agentArgs)
if options.numTraining > 0:
args['numTraining'] = options.numTraining
if 'numTraining' not in agentOpts:
agentOpts['numTraining'] = options.numTraining
pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs
args['pacman'] = pacman
# Don't display training games
if 'numTrain' in agentOpts:
options.numQuiet = int(agentOpts['numTrain'])
options.numIgnore = int(agentOpts['numTrain'])
# Choose a ghost agent
ghostType = loadAgent(options.ghost, noKeyboard)
args['ghosts'] = [ghostType(i+1) for i in range(options.numGhosts)]
# Choose a display format
if options.quietGraphics:
import textDisplay
args['display'] = textDisplay.NullGraphics()
elif options.textGraphics:
import textDisplay
textDisplay.SLEEP_TIME = options.frameTime
args['display'] = textDisplay.PacmanGraphics()
else:
import graphicsDisplay
if "fn" in agentOpts:
is_mapping_problem = agentOpts['fn'] in ["mp", 'slam']
else:
is_mapping_problem = False
args['display'] = graphicsDisplay.PacmanGraphics(
options.zoom, frameTime=options.frameTime, render_walls_beforehand=(not is_mapping_problem))
args['numGames'] = options.numGames
args['record'] = options.record
args['catchExceptions'] = options.catchExceptions
args['timeout'] = options.timeout
# Special case: recorded games don't use the runGames method or args structure
if options.gameToReplay != None:
print('Replaying recorded game %s.' % options.gameToReplay)
import pickle
f = open(options.gameToReplay, 'rb')
try:
recorded = pickle.load(f)
finally:
f.close()
recorded['display'] = args['display']
replayGame(**recorded)
sys.exit(0)
return args
def loadAgent(pacman, nographics):
# Looks through all pythonPath Directories for the right module,
pythonPathStr = os.path.expandvars("$PYTHONPATH")
if pythonPathStr.find(';') == -1:
pythonPathDirs = pythonPathStr.split(':')
else:
pythonPathDirs = pythonPathStr.split(';')
pythonPathDirs.append('.')
for moduleDir in pythonPathDirs:
if not os.path.isdir(moduleDir):
continue
moduleNames = [f for f in os.listdir(moduleDir) if f.endswith('gents.py')]
for modulename in moduleNames:
try:
module = __import__(modulename[:-3])
except ImportError:
continue
if pacman in dir(module):
if nographics and modulename == 'keyboardAgents.py':
raise Exception('Using the keyboard requires graphics (not text display)')
return getattr(module, pacman)
raise Exception('The agent ' + pacman + ' is not specified in any *Agents.py.')
def replayGame(layout, actions, display):
import pacmanAgents
import ghostAgents
rules = ClassicGameRules()
agents = [pacmanAgents.GreedyAgent()] + [ghostAgents.RandomGhost(i+1) for i in range(layout.getNumGhosts())]
game = rules.newGame(layout, agents[0], agents[1:], display)
state = game.state
display.initialize(state.data)
for action in actions:
# Execute the action
state = state.generateSuccessor(*action)
# Change the display
display.update(state.data)
# Allow for game specific conditions (winning, losing, etc.)
rules.process(state, game)
display.finish()
def runGames(layout, pacman, ghosts, display, numGames, record, numTraining=0, catchExceptions=False, timeout=30, steps=1000):
import __main__
__main__.__dict__['_display'] = display
rules = ClassicGameRules(timeout)
games = []
for i in range(numGames):
beQuiet = i < numTraining
if beQuiet:
# Suppress output and graphics
import textDisplay
gameDisplay = textDisplay.NullGraphics()
rules.quiet = True
else:
gameDisplay = display
rules.quiet = False
game = rules.newGame(layout, pacman, ghosts, gameDisplay, beQuiet, catchExceptions)
if pacman.live_checking:
yield from game.run()
else:
for _ in game.run():
pass
if not beQuiet:
games.append(game)
if record:
import time
import pickle
fname = ('recorded-game-%d' % (i + 1)) + '-'.join([str(t) for t in time.localtime()[1:6]])
f = open(fname, 'wb')
components = {'layout': layout, 'actions': game.moveHistory}
pickle.dump(components, f)
f.close()
if (numGames-numTraining) > 0:
scores = [game.state.getScore() for game in games]
wins = [game.state.isWin() for game in games]
winRate = wins.count(True) / float(len(wins))
print('Average Score:', sum(scores) / float(len(scores)))
print('Scores: ', ', '.join([str(score) for score in scores]))
print('Win Rate: %d/%d (%.2f)' % (wins.count(True), len(wins), winRate))
print('Record: ', ', '.join([['Loss', 'Win'][int(w)] for w in wins]))
yield games
if __name__ == '__main__':
"""
The main function called when pacman.py is run
from the command line:
> python pacman.py
See the usage string for more details.
> python pacman.py --help
"""
args = readCommand(sys.argv[1:]) # Get game components based on input
next(runGames(**args))
# import cProfile
# cProfile.run("runGames( **args )")
pass

63
logic/pacmanAgents.py Normal file
View File

@ -0,0 +1,63 @@
# pacmanAgents.py
# ---------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from pacman import Directions
from game import Agent
import random
import game
import util
class LeftTurnAgent(game.Agent):
"An agent that turns left at every opportunity"
def getAction(self, state):
legal = state.getLegalPacmanActions()
current = state.getPacmanState().configuration.direction
if current == Directions.STOP:
current = Directions.NORTH
left = Directions.LEFT[current]
if left in legal:
return left
if current in legal:
return current
if Directions.RIGHT[current] in legal:
return Directions.RIGHT[current]
if Directions.LEFT[left] in legal:
return Directions.LEFT[left]
return Directions.STOP
class GreedyAgent(Agent):
def __init__(self, evalFn="scoreEvaluation"):
self.evaluationFunction = util.lookup(evalFn, globals())
assert self.evaluationFunction != None
def getAction(self, state):
# Generate candidate actions
legal = state.getLegalPacmanActions()
if Directions.STOP in legal:
legal.remove(Directions.STOP)
successors = [(state.generateSuccessor(0, action), action)
for action in legal]
scored = [(self.evaluationFunction(state), action)
for state, action in successors]
bestScore = max(scored)[0]
bestActions = [pair[1] for pair in scored if pair[0] == bestScore]
return random.choice(bestActions)
def scoreEvaluation(state):
return state.getScore()

18
logic/projectParams.py Normal file
View File

@ -0,0 +1,18 @@
# projectParams.py
# ----------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
STUDENT_CODE_DEFAULT = 'logicPlan.py'
PROJECT_TEST_CLASSES = 'logic_planTestClasses.py'
PROJECT_NAME = 'Project 3: Logic'
BONUS_PIC = False

20
logic/pycosat_test.py Normal file
View File

@ -0,0 +1,20 @@
# pycosat_test.py
# ---------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import pycosat
cnf = [[1, -5, 4], [-1, 5, 3, 4], [-3, -4]]
print(pycosat.solve(cnf))

251
logic/testClasses.py Normal file
View File

@ -0,0 +1,251 @@
# testClasses.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
# import modules from python standard library
from __future__ import print_function
import inspect
import re
import sys
import math
# BEGIN SOLUTION NO PROMPT
def invertLayout(layout_text):
# Keep lower left fix as this is hardcoded in PositionSearchProblem (gah)
# as the goal.
lines = [l.strip() for l in layout_text.split('\n')]
h = len(lines)
w = len(lines[0])
tiles = {}
for y, line in enumerate(lines):
for x, tile in enumerate(line):
# (x,y)
# (0,0) -> (h,w)
# (0,h) -> (0,w)
tiles[h-1-y, w-1-x] = tile
new_lines = []
for y in range(w):
new_lines.append("")
for x in range(h):
new_lines[-1] += tiles[x,y]
#return layout_text
return "\n".join(new_lines)
# END SOLUTION NO PROMPT
# Class which models a question in a project. Note that questions have a
# maximum number of points they are worth, and are composed of a series of
# test cases
class Question(object):
def raiseNotDefined(self):
print('Method not implemented: %s' % inspect.stack()[1][3])
sys.exit(1)
def __init__(self, questionDict, display):
self.maxPoints = int(questionDict['max_points'])
self.testCases = []
self.display = display
def getDisplay(self):
return self.display
def getMaxPoints(self):
return self.maxPoints
# Note that 'thunk' must be a function which accepts a single argument,
# namely a 'grading' object
def addTestCase(self, testCase, thunk):
self.testCases.append((testCase, thunk))
def execute(self, grades):
self.raiseNotDefined()
# Question in which all test cases must be passed in order to receive credit
class PassAllTestsQuestion(Question):
def execute(self, grades):
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
testsFailed = False
grades.assignZeroCredit()
for _, f in self.testCases:
if not f(grades):
testsFailed = True
if testsFailed:
grades.fail("Tests failed.")
else:
grades.assignFullCredit()
class ExtraCreditPassAllTestsQuestion(Question):
def __init__(self, questionDict, display):
Question.__init__(self, questionDict, display)
self.extraPoints = int(questionDict['extra_points'])
def execute(self, grades):
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
testsFailed = False
grades.assignZeroCredit()
for _, f in self.testCases:
if not f(grades):
testsFailed = True
if testsFailed:
grades.fail("Tests failed.")
else:
grades.assignFullCredit()
grades.addPoints(self.extraPoints)
# Question in which predict credit is given for test cases with a ``points'' property.
# All other tests are mandatory and must be passed.
class HackedPartialCreditQuestion(Question):
def execute(self, grades):
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
grades.assignZeroCredit()
points = 0
passed = True
for testCase, f in self.testCases:
testResult = f(grades)
if "points" in testCase.testDict:
if testResult:
points += float(testCase.testDict["points"])
else:
passed = passed and testResult
# FIXME: Below terrible hack to match q3's logic
if int(points) == self.maxPoints and not passed:
grades.assignZeroCredit()
else:
grades.addPoints(int(points))
class Q6PartialCreditQuestion(Question):
"""Fails any test which returns False, otherwise doesn't effect the grades object.
Partial credit tests will add the required points."""
def execute(self, grades):
grades.assignZeroCredit()
results = []
for _, f in self.testCases:
results.append(f(grades))
if False in results:
grades.assignZeroCredit()
class PartialCreditQuestion(Question):
"""Fails any test which returns False, otherwise doesn't effect the grades object.
Partial credit tests will add the required points."""
def execute(self, grades):
grades.assignZeroCredit()
for _, f in self.testCases:
if not f(grades):
grades.assignZeroCredit()
grades.fail("Tests failed.")
return False
class NumberPassedQuestion(Question):
"""Grade is the number of test cases passed."""
def execute(self, grades):
grades.addPoints([f(grades) for _, f in self.testCases].count(True))
class PercentPassedQuestion(Question):
"""Grade is the number of test cases passed."""
def execute(self, grades):
count = [f(grades) for _, f in self.testCases].count(True)
grades.addPoints(math.floor(self.maxPoints*(count/len(self.testCases))))
# BEGIN SOLUTION NO PROMPT
from testParser import emitTestDict
# END SOLUTION NO PROMPT
# Template modeling a generic test case
class TestCase(object):
def raiseNotDefined(self):
print('Method not implemented: %s' % inspect.stack()[1][3])
sys.exit(1)
def getPath(self):
return self.path
def __init__(self, question, testDict):
self.question = question
self.testDict = testDict
self.path = testDict['path']
self.messages = []
def __str__(self):
self.raiseNotDefined()
def execute(self, grades, moduleDict, solutionDict):
self.raiseNotDefined()
def writeSolution(self, moduleDict, filePath):
self.raiseNotDefined()
return True
# Tests should call the following messages for grading
# to ensure a uniform format for test output.
#
# TODO: this is hairy, but we need to fix grading.py's interface
# to get a nice hierarchical project - question - test structure,
# then these should be moved into Question proper.
def testPass(self, grades):
grades.addMessage('PASS: %s' % (self.path,))
for line in self.messages:
grades.addMessage(' %s' % (line,))
return True
def testFail(self, grades):
grades.addMessage('FAIL: %s' % (self.path,))
for line in self.messages:
grades.addMessage(' %s' % (line,))
return False
# This should really be question level?
def testPartial(self, grades, points, maxPoints):
grades.addPoints(points)
extraCredit = max(0, points - maxPoints)
regularCredit = points - extraCredit
grades.addMessage('%s: %s (%s of %s points)' % (
"PASS" if points >= maxPoints else "FAIL", self.path, regularCredit, maxPoints))
if extraCredit > 0:
grades.addMessage('EXTRA CREDIT: %s points' % (extraCredit,))
for line in self.messages:
grades.addMessage(' %s' % (line,))
return True
def addMessage(self, message):
self.messages.extend(message.split('\n'))
# BEGIN SOLUTION NO PROMPT
def createPublicVersion(self):
self.raiseNotDefined()
def emitPublicVersion(self, filePath):
with open(filePath, 'w') as handle:
emitTestDict(self.testDict, handle)
# END SOLUTION NO PROMPT

87
logic/testParser.py Normal file
View File

@ -0,0 +1,87 @@
# testParser.py
# -------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from __future__ import print_function
import re
import sys
class TestParser(object):
def __init__(self, path):
# save the path to the test file
self.path = path
def removeComments(self, rawlines):
# remove any portion of a line following a '#' symbol
fixed_lines = []
for l in rawlines:
idx = l.find('#')
if idx == -1:
fixed_lines.append(l)
else:
fixed_lines.append(l[0:idx])
return '\n'.join(fixed_lines)
def parse(self):
# read in the test case and remove comments
test = {}
with open(self.path) as handle:
raw_lines = handle.read().split('\n')
test_text = self.removeComments(raw_lines)
test['__raw_lines__'] = raw_lines
test['path'] = self.path
test['__emit__'] = []
lines = test_text.split('\n')
i = 0
# read a property in each loop cycle
while (i < len(lines)):
# skip blank lines
if re.match(r'\A\s*\Z', lines[i]):
test['__emit__'].append(("raw", raw_lines[i]))
i += 1
continue
m = re.match(r'\A([^"]*?):\s*"([^"]*)"\s*\Z', lines[i])
if m:
test[m.group(1)] = m.group(2)
test['__emit__'].append(("oneline", m.group(1)))
i += 1
continue
m = re.match(r'\A([^"]*?):\s*"""\s*\Z', lines[i])
if m:
msg = []
i += 1
while (not re.match(r'\A\s*"""\s*\Z', lines[i])):
msg.append(raw_lines[i])
i += 1
test[m.group(1)] = '\n'.join(msg)
test['__emit__'].append(("multiline", m.group(1)))
i += 1
continue
print('error parsing test file: {}'.format(self.path))
sys.exit(1)
return test
def emitTestDict(testDict, handle):
for kind, data in testDict['__emit__']:
if kind == "raw":
handle.write(data + "\n")
elif kind == "oneline":
handle.write('%s: "%s"\n' % (data, testDict[data]))
elif kind == "multiline":
handle.write('%s: """\n%s\n"""\n' % (data, testDict[data]))
else:
raise Exception("Bad __emit__")

1
logic/test_cases/CONFIG Normal file
View File

@ -0,0 +1 @@
order: "q1 q2 q3 q4 q5 q6 q7 q8"

View File

@ -0,0 +1,2 @@
class: "PassAllTestsQuestion"
max_points: "2"

View File

@ -0,0 +1,3 @@
# This is the solution file for test_cases/q1/correctSentence1.test.
# The result of evaluating the test must equal the below when cast to a string.
result: "((A | B) & (~A <=> (~B | C)) & (~A | ~B | C))"

View File

@ -0,0 +1,9 @@
class: "EvalTest"
success: "PASS"
failure: "NO PASS"
# A python expression to be evaluated. This expression must return the
# same result for the student and instructor's code.
test: "logicPlan.sentence1()"

View File

@ -0,0 +1,3 @@
# This is the solution file for test_cases/q1/correctSentence2.test.
# The result of evaluating the test must equal the below when cast to a string.
result: "((C <=> (B | D)) & (A >> (~B & ~D)) & (~(B & ~C) >> A) & (~D >> C))"

View File

@ -0,0 +1,9 @@
class: "EvalTest"
success: "PASS"
failure: "NO PASS"
# A python expression to be evaluated. This expression must return the
# same result for the student and instructor's code.
test: "logicPlan.sentence2()"

View File

@ -0,0 +1,3 @@
# This is the solution file for test_cases/q1/correctSentence3.test.
# The result of evaluating the test must equal the below when cast to a string.
result: "((PacmanAlive_1 <=> ((PacmanAlive_0 & ~PacmanKilled_0) | (~PacmanAlive_0 & PacmanBorn_0))) & ~(PacmanAlive_0 & PacmanBorn_0) & PacmanBorn_0)"

View File

@ -0,0 +1,9 @@
class: "EvalTest"
success: "PASS"
failure: "NO PASS"
# A python expression to be evaluated. This expression must return the
# same result for the student and instructor's code.
test: "logicPlan.sentence3()"

View File

@ -0,0 +1,3 @@
# This is the solution file for test_cases/q1/entails.test.
# The result of evaluating the test must equal the below when cast to a string.
result: "True True False True True False"

Some files were not shown because too many files have changed in this diff Show More