Files
PPCA-AIPacMan-2024/multiagent/multiAgents.py
2024-07-01 03:33:31 +00:00

411 lines
19 KiB
Python

# multiAgents.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from util import manhattanDistance
from game import Directions, Actions
import random, util
from game import Agent
from pacman import GameState
class ReflexAgent(Agent):
"""
A reflex agent chooses an action at each choice point by examining
its alternatives via a state evaluation function.
The code below is provided as a guide. You are welcome to change
it in any way you see fit, so long as you don't touch our method
headers.
"""
def getAction(self, gameState: GameState):
"""
You do not need to change this method, but you're welcome to.
getAction chooses among the best options according to the evaluation function.
Just like in the previous project, getAction takes a GameState and returns
some Directions.X for some X in the set {NORTH, SOUTH, WEST, EAST, STOP}
"""
# Collect legal moves and successor states
legalMoves = gameState.getLegalActions()
# Choose one of the best actions
scores = [self.evaluationFunction(gameState, action) for action in legalMoves]
bestScore = max(scores)
bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore]
chosenIndex = random.choice(bestIndices) # Pick randomly among the best
"Add more of your code here if you want to"
return legalMoves[chosenIndex]
def evaluationFunction(self, currentGameState: GameState, action):
"""
Design a better evaluation function here.
The evaluation function takes in the current and proposed successor
GameStates (pacman.py) and returns a number, where higher numbers are better.
The code below extracts some useful information from the state, like the
remaining food (newFood) and Pacman position after moving (newPos).
newScaredTimes holds the number of moves that each ghost will remain
scared because of Pacman having eaten a power pellet.
Print out these variables to see what you're getting, then combine them
to create a masterful evaluation function.
"""
# Useful information you can extract from a GameState (pacman.py)
kInf=1e100
successorGameState = currentGameState.generatePacmanSuccessor(action)
new_pos = successorGameState.getPacmanPosition()
# newFood = successorGameState.getFood()
# new_ghost_states = successorGameState.getGhostStates()
new_ghost_positions = successorGameState.getGhostPositions()
# newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]
if new_pos in new_ghost_positions:
return -kInf
capsules_position = currentGameState.getCapsules()
food_positions = currentGameState.getFood().asList()
action_vec=Actions.directionToVector(action)
if action=="Stop":
return random.uniform(-0.2,0.2)
# print(f"action:{action}, action_vec:{action_vec}")
current_ghost_positions = currentGameState.getGhostPositions()
current_ghost_scared_times = [ghostState.scaredTimer for ghostState in currentGameState.getGhostStates()]
not_scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]==0]
scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>0 and current_ghost_scared_times[i]<=1.2*util.manhattanDistance(current_ghost_positions[i],new_pos)+2]
edible_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>1.2*util.manhattanDistance(current_ghost_positions[i],new_pos)+2]
current_self_position = currentGameState.getPacmanPosition()
def DotProduct(a,b):
return a[0]*b[0]+a[1]*b[1]
def CrossProduct(a,b):
return a[0]*b[1]-a[1]*b[0]
def EuclideanDistance(a,b):
return ((a[0]-b[0])**2+(a[1]-b[1])**2)**0.5
def DistanceAnalysis(current_self_position,object_postion_list,flag="None"):
if len(object_postion_list)==0:
return 0
if current_self_position in object_postion_list:
return kInf
res=0
for obj_pos in object_postion_list:
if flag=="Ghost" and util.manhattanDistance(current_self_position,obj_pos)>=6:
continue
vec_to_obj=(obj_pos[0]-current_self_position[0],obj_pos[1]-current_self_position[1])
# print(f"vec_to_obj:{vec_to_obj}")
# print(f"action:{action}, action_vec:{action_vec}")
# print(f"EuclideanDistance(action_vec,(0,0)):{EuclideanDistance(action_vec,(0,0))}")
# print(f"EuclideanDistance(vec_to_obj,(0,0)): {EuclideanDistance(vec_to_obj,(0,0))}")
cos_theta=DotProduct(action_vec,vec_to_obj)/(EuclideanDistance(action_vec,(0,0))*EuclideanDistance(vec_to_obj,(0,0)))
distance_to_obj=EuclideanDistance(current_self_position,obj_pos)
res+=(cos_theta+1)/distance_to_obj
return res
da_for_foods=DistanceAnalysis(current_self_position,food_positions)
if new_pos in currentGameState.getFood().asList():
da_for_foods=200
da_for_unscared_ghosts=DistanceAnalysis(current_self_position,not_scared_ghosts_positions,"Ghost")
da_for_scared_ghosts=DistanceAnalysis(current_self_position,scared_ghosts_positions)
da_for_capsules=DistanceAnalysis(current_self_position,capsules_position)
da_for_edible_ghosts=DistanceAnalysis(current_self_position,edible_ghosts_positions)
res=da_for_capsules*2-da_for_unscared_ghosts*2-da_for_scared_ghosts*0.2+da_for_foods*0.2+da_for_edible_ghosts
res*=random.uniform(0.9, 1.1)
# print(f"res:{res}")
return res
def scoreEvaluationFunction(currentGameState: GameState):
"""
This default evaluation function just returns the score of the state.
The score is the same one displayed in the Pacman GUI.
This evaluation function is meant for use with adversarial search agents
(not reflex agents).
"""
return currentGameState.getScore()
class MultiAgentSearchAgent(Agent):
"""
This class provides some common elements to all of your
multi-agent searchers. Any methods defined here will be available
to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent.
You *do not* need to make any changes here, but you can if you want to
add functionality to all your adversarial search agents. Please do not
remove anything, however.
Note: this is an abstract class: one that should not be instantiated. It's
only partially specified, and designed to be extended. Agent (game.py)
is another abstract class.
"""
def __init__(self, evalFn = 'scoreEvaluationFunction', depth = '2'):
self.index = 0 # Pacman is always agent index 0
self.evaluationFunction = util.lookup(evalFn, globals())
self.depth = int(depth)
class MinimaxAgent(MultiAgentSearchAgent):
"""
Your minimax agent (question 2)
"""
def MinMaxSearch(self,gameState: GameState,depth_remain:int,agentIndex:int) -> tuple[int, list[Actions]]:
if depth_remain==0:
# print(f"depth_remain:{depth_remain}")
# print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}")
return self.evaluationFunction(gameState),[]
legal_actions = gameState.getLegalActions(agentIndex)
if len(legal_actions)==0:
# print(f"depth_remain:{depth_remain}")
# print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}")
return self.evaluationFunction(gameState),[]
kInf=1e100
res_action=[]
res_val=0
if agentIndex==0:
# Max
res_val = -kInf
for action in legal_actions:
successorGameState = gameState.generateSuccessor(agentIndex,action)
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
val,action_list=self.MinMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
if val>res_val:
res_val=val
# print(f"action:{action}, action_list:{action_list}")
res_action=[action]+action_list
else:
# Mins
res_val = kInf
for action in legal_actions:
successorGameState = gameState.generateSuccessor(agentIndex,action)
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
val,action_list=self.MinMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
if val<res_val:
res_val=val
res_action=[action]+action_list
# print(f"depth_remain:{depth_remain}")
# print(f"returning {res_val}, {res_action}")
return res_val,res_action
def getAction(self, gameState: GameState):
"""
Returns the minimax action from the current gameState using self.depth
and self.evaluationFunction.
Here are some method calls that might be useful when implementing minimax.
gameState.getLegalActions(agentIndex):
Returns a list of legal actions for an agent
agentIndex=0 means Pacman, ghosts are >= 1
gameState.generateSuccessor(agentIndex, action):
Returns the successor game state after an agent takes an action
gameState.getNumAgents():
Returns the total number of agents in the game
gameState.isWin():
Returns whether or not the game state is a winning state
gameState.isLose():
Returns whether or not the game state is a losing state
"""
stat = self.MinMaxSearch(gameState,self.depth,0)
# print(f"stat:{stat}")
return stat[1][0]
class AlphaBetaAgent(MultiAgentSearchAgent):
"""
Your minimax agent with alpha-beta pruning (question 3)
"""
def AlphaBetaSearch(self,gameState: GameState,alpha,beta,depth_remain:int,agentIndex:int) -> tuple[int, list[Actions]]:
if alpha>beta:
raise ValueError("alpha should be less than beta")
legal_actions = gameState.getLegalActions(agentIndex)
if len(legal_actions)==0:
# print(f"depth_remain: leaf {depth_remain}, alpha:{alpha}, beta:{beta}")
# print(f"returning {self.evaluationFunction(gameState)}, {[]}")
return self.evaluationFunction(gameState),[]
if depth_remain==0:
# print(f"depth_remain: leaf {depth_remain}, alpha:{alpha}, beta:{beta}")
# print(f"returning {self.evaluationFunction(gameState)}, {[]}")
return self.evaluationFunction(gameState),[]
res_action=[]
res_val=0
kInf=1e100
if agentIndex==0:
# Max
res_val = -kInf
for action in legal_actions:
successorGameState = gameState.generateSuccessor(agentIndex,action)
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
val,action_list=self.AlphaBetaSearch(successorGameState,alpha,beta,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
alpha=max(alpha,val)
# print(f"now alpha:{alpha}, beta:{beta}")
if val>res_val:
res_val=val
# print(f"action:{action}, action_list:{action_list}")
res_action=[action]+action_list
if val>beta:
break
else:
# Mins
res_val = kInf
for action in legal_actions:
successorGameState = gameState.generateSuccessor(agentIndex,action)
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
val,action_list=self.AlphaBetaSearch(successorGameState,alpha,beta,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
beta=min(beta,val)
# print(f"now alpha:{alpha}, beta:{beta}")
if val<res_val:
res_val=val
res_action=[action]+action_list
if alpha>val:
break
# print(f"depth_remain:{depth_remain}, alpha:{alpha}, beta:{beta}")
# print(f"returning {res_val}, {res_action}")
return res_val,res_action
def getAction(self, gameState: GameState):
"""
Returns the minimax action using self.depth and self.evaluationFunction
"""
kInf=1e100
stat = self.AlphaBetaSearch(gameState,-kInf,kInf,self.depth,0)
# print(f"stat:{stat}")
return stat[1][0]
last_score=0
class ExpectimaxAgent(MultiAgentSearchAgent):
"""
Your expectimax agent (question 4)
"""
def ExpectMaxSearch(self,gameState: GameState,depth_remain:int,agentIndex:int) -> tuple[int, list[Actions]]:
if depth_remain==0:
# print(f"depth_remain:{depth_remain}")
# print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}")
return self.evaluationFunction(gameState),[]
legal_actions = gameState.getLegalActions(agentIndex)
if len(legal_actions)==0:
# print(f"depth_remain:{depth_remain}")
# print(f"returning leaf {self.evaluationFunction(gameState)}, {[]}")
return self.evaluationFunction(gameState),[]
kInf=1e100
res_action=[]
res_val=0
if agentIndex==0:
# Max
res_val = -kInf
for action in legal_actions:
successorGameState = gameState.generateSuccessor(agentIndex,action)
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
if action=="Stop":
val-=100
if val>res_val:
res_val=val
# print(f"action:{action}, action_list:{action_list}")
res_action=[action]+action_list
else:
# Mins
res_val = kInf
val_list=[]
for action in legal_actions:
successorGameState = gameState.generateSuccessor(agentIndex,action)
nxt_depth=depth_remain-1 if agentIndex==gameState.getNumAgents()-1 else depth_remain
val,action_list=self.ExpectMaxSearch(successorGameState,nxt_depth,(agentIndex+1)%gameState.getNumAgents())
val_list.append(val)
if val<res_val:
res_val=val
res_action=[action]+action_list
res_val=sum(val_list)/len(val_list)
# print(f"depth_remain:{depth_remain}")
# print(f"returning {res_val}, {res_action}")
return res_val,res_action
def getAction(self, gameState: GameState):
"""
Returns the expectimax action using self.depth and self.evaluationFunction
All ghosts should be modeled as choosing uniformly at random from their
legal moves.
"""
global last_score
last_score=gameState.getScore()
stat = self.ExpectMaxSearch(gameState,self.depth,0)
# print(f"stat:{stat}")
return stat[1][0]
def betterEvaluationFunction(currentGameState: GameState):
"""
Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable
evaluation function (question 5).
DESCRIPTION: <write something here so we know what you did>
"""
# Useful information you can extract from a GameState (pacman.py)
if currentGameState.isLose():
return -500
if currentGameState.isWin():
return 500
kInf=1e100
capsules_position = currentGameState.getCapsules()
current_pos = currentGameState.getPacmanPosition()
food_positions = currentGameState.getFood().asList()
# print(f"action:{action}, action_vec:{action_vec}")
current_ghost_positions = currentGameState.getGhostPositions()
current_ghost_scared_times = [ghostState.scaredTimer for ghostState in currentGameState.getGhostStates()]
not_scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]==0]
scared_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>0 and current_ghost_scared_times[i]<=1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2]
edible_ghosts_positions = [current_ghost_positions[i] for i in range(len(current_ghost_positions)) if current_ghost_scared_times[i]>1.2*util.manhattanDistance(current_ghost_positions[i],current_pos)+2]
current_self_position = currentGameState.getPacmanPosition()
def DotProduct(a,b):
return a[0]*b[0]+a[1]*b[1]
def CrossProduct(a,b):
return a[0]*b[1]-a[1]*b[0]
def EuclideanDistance(a,b):
return ((a[0]-b[0])**2+(a[1]-b[1])**2)**0.5
def DistanceAnalysis(current_self_position,object_postion_list,flag="None"):
if len(object_postion_list)==0:
return 0
if current_self_position in object_postion_list:
return kInf
res=0
for obj_pos in object_postion_list:
if flag=="Ghost" and util.manhattanDistance(current_self_position,obj_pos)>=6:
continue
distance_to_obj=util.manhattanDistance(current_self_position,obj_pos)
res=max(res,1/distance_to_obj)
return res
da_for_foods=DistanceAnalysis(current_self_position,food_positions)
da_for_unscared_ghosts=DistanceAnalysis(current_self_position,not_scared_ghosts_positions,"Ghost")
da_for_scared_ghosts=DistanceAnalysis(current_self_position,scared_ghosts_positions)
da_for_capsules=DistanceAnalysis(current_self_position,capsules_position)
da_for_edible_ghosts=DistanceAnalysis(current_self_position,edible_ghosts_positions)
res=da_for_capsules*2-da_for_unscared_ghosts*2-da_for_scared_ghosts*0.2+da_for_foods*0.2+da_for_edible_ghosts*1
if da_for_unscared_ghosts<1/6:
res+=(da_for_foods*0.2+da_for_edible_ghosts*1)*5
# res*=random.uniform(0.9, 1.1)
res*=100
global last_score
res+=(currentGameState.getScore()-last_score)*10
# print(f"res:{res}")
return res
# Abbreviation
better = betterEvaluationFunction